Skip to main content

Advertisement

Log in

Efficacy and safety of robot-assisted versus fluoroscopy-assisted PKP or PVP for osteoporotic vertebral compression fractures: a systematic review and meta-analysis

  • Review
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

Percutaneous vertebral augmentation (PVA), which includes percutaneous kyphoplasty (PKP) and percutaneous vertebroplasty (PVP). Robot-assisted (RA) and fluoroscopy-assisted (FA) are important methods for treating osteoporotic vertebral compression fractures (OVCFs), though it is still unclear which is superior. This analysis aimed to compare the efficacy and safety of RA and FA. PubMed, Web of Science, Cochrane Library, and China National Knowledge Infrastructure were systematically searched, the outcomes included surgical parameters (leakage rate, operation time, number of fluoroscopic, injection volume, inclination angle), and clinical indexes (hospital stays, Visual Analog Scale (VAS), Oswestry Disability Index (ODI), Cobb angle, the midline height of vertebral). Thirteen articles involving 1094 patients were included. RA group produced better results than the FA group in the leakage rate (OR = 0.27; 95% CI 0.17–0.42; P < 0.00001), number of fluoroscopic (WMD = – 13.88; 95% CI – 18.47 to – 9.30; P < 0.00001), inclination angle (WMD = 5.02; 95% CI 4.42–5.61; P < 0.00001), hospital stays (WMD = – 0.32; 95% CI – 0.58 to – 0.05; P = 0.02), VAS within 3 days (WMD = – 0.19; 95% CI – 0.26 to – 0.12; P < 0.00001), Cobb angle within 3 days (WMD = – 1.35; 95% CI – 2.56 to – 0.14; P = 0.003) and Cobb angle after 1 month (WMD = – 1.02; 95% CI – 1.84 to – 0.20; P = 0.01). But no significant differences in operation time, injection volume, ODI, the midline height of vertebral, and VAS score after 1 month. Our analysis found that the RA group had lower cement leakage rates, number of fluoroscopic and hospital stays, a larger inclination angle, better short-term pain improvement, and Cobb angle improvement. It is worth acknowledging that robotic-assisted surgery holds promise for the development of spine surgery. The study was registered in the PROSPERO (CRD42023393497).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

OVCFs:

Osteoporotic vertebral compression fractures

PVA:

Percutaneous vertebral augmentation

PKP:

Percutaneous kyphoplasty

PVP:

Percutaneous vertebroplasty

RA:

Robot-assisted

FA:

Fluoroscopy-assisted

BMI:

Body mass index

BMD:

Bone mineral density

VAS:

Visual analog scale

ODI:

Oswestry disability index

RCT:

Randomized controlled trial

WMD:

Weighted mean difference

SMD:

Standardized mean difference

CI:

Confidence interval

OR:

Odds ratio

CT:

Computed tomography

M–H:

Mantel–Haenszel

IV:

Inverse variance

df:

Degrees of freedom

References

  1. Patel D, Liu J, Ebraheim NA (2022) Managements of osteoporotic vertebral compression fractures: a narrative review. World J Orthop 13:564–573. https://doi.org/10.5312/wjo.v13.i6.564

    Article  PubMed  PubMed Central  Google Scholar 

  2. Qin J, Zhong W, Quan Z (2022) The surgical management trends of osteoporotic vertebral compression fractures: 5-year experience in one institution. Sci Rep 12:18040. https://doi.org/10.1038/s41598-022-23106-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Long Y, Yi W, Yang D (2020) Advances in vertebral augmentation systems for osteoporotic vertebral compression fractures. Pain Res Manag 2020:3947368. https://doi.org/10.1155/2020/3947368

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ren H, Feng T, Cao J et al (2022) A retrospective study to evaluate the effect of dynamic fracture mobility on cement leakage in percutaneous vertebroplasty and percutaneous kyphoplasty in 286 patients with osteoporotic vertebral compression fractures. Med Sci Monit 28:e935080. https://doi.org/10.12659/MSM.935080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patel S, Chiu RG, Chaker AN et al (2022) Current trends and socioeconomic disparities in the utilization of spine augmentation for patients with osteoporotic vertebral compression fracture: a nationwide inpatient sample analysis from 2012 to 2016. Int J Spine Surg 16:490–497. https://doi.org/10.14444/8262

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lopez IB, Benzakour A, Mavrogenis A et al (2023) Robotics in spine surgery: systematic review of literature. Int Orthop 47:447–456. https://doi.org/10.1007/s00264-022-05508-9

    Article  PubMed  Google Scholar 

  7. Qian J, Fang C, Ge P et al (2022) Efficacy and safety of establishing an optimal path through unilateral pedicle under the assistance of surgical robot in percutaneous kyphoplasty. Pain Physician 25:E133–E140

    PubMed  Google Scholar 

  8. Huang J, Xing T, Cheng Z et al (2022) AOSRV: development and preliminary performance assessment of a new robotic system for autonomous percutaneous vertebroplasty. Int J Med Robot 18:e2456. https://doi.org/10.1002/rcs.2456

    Article  PubMed  Google Scholar 

  9. Yuan W, Cao W, Meng X et al (2020) Learning curve of robot-assisted percutaneous kyphoplasty for osteoporotic vertebral compression fractures. World Neurosurg 138:e323–e329. https://doi.org/10.1016/j.wneu.2020.02.110

    Article  PubMed  Google Scholar 

  10. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med 18:e1003583. https://doi.org/10.1371/journal.pmed.1003583

    Article  PubMed  PubMed Central  Google Scholar 

  11. Faiz KW (2014) VAS–visual analog scale. Tidsskr Nor Laegeforen 134:323. https://doi.org/10.4045/tidsskr.13.1145

    Article  PubMed  Google Scholar 

  12. Fairbank JC, Pynsent PB (2000) The Oswestry disability index. Spine Phila Pa (1976) 25:2940–2952. https://doi.org/10.1097/00007632-200011150-00017

    Article  CAS  PubMed  Google Scholar 

  13. Sterne JAC, Savovic J, Page MJ et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898. https://doi.org/10.1136/bmj.l4898

    Article  PubMed  Google Scholar 

  14. Sterne JA, Hernan MA, Reeves BC et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355:i4919. https://doi.org/10.1136/bmj.i4919

    Article  PubMed  PubMed Central  Google Scholar 

  15. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  16. Yuan W, Meng X, Cao W et al (2022) Robot-assisted versus fluoroscopy-assisted kyphoplasty in the treatment of osteoporotic vertebral compression fracture: a retrospective study. Global Spine J 12:1151–1157. https://doi.org/10.1177/2192568220978228

    Article  PubMed  Google Scholar 

  17. Wang B, Cao J, Chang J et al (2021) Effectiveness of Tirobot-assisted vertebroplasty in treating thoracolumbar osteoporotic compression fracture. J Orthop Surg Res 16:65. https://doi.org/10.1186/s13018-021-02211-0

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sun T, Zhang YZ, Hu XF et al (2022) Feasibility analysis of bi-planar fluoroscopic imaging robot assisted PKP in the treatment of osteoporotic vertebral compression fractures. Orthop Biomech Mater Clin Study 19:27–31. https://doi.org/10.3969/j.issn.1672-5972.2022.03.005

    Article  CAS  Google Scholar 

  19. Lin S, Tan K, Hu J et al (2022) Effectiveness of modified orthopedic robot-assisted percutaneous kyphoplasty in treatment of osteoporotic vertebral compression fracture. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 36:1119–1125. https://doi.org/10.7507/1002-1892.202204013

    Article  PubMed  Google Scholar 

  20. Li Q, Wu C, Huang Z et al (2022) A comparison of robot-assisted and fluoroscopy-assisted kyphoplasty in the treatment of multi-segmental osteoporotic vertebral compression fractures. J Biomed Res 36:208–214. https://doi.org/10.7555/JBR.36.20220023

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jin M, Ge M, Lei L et al (2022) Clinical and radiologic outcomes of robot-assisted kyphoplasty versus fluoroscopy-assisted kyphoplasty in the treatment of osteoporotic vertebral compression fractures: a retrospective comparative study. World Neurosurg 158:e1–e9. https://doi.org/10.1016/j.wneu.2021.10.066

    Article  PubMed  Google Scholar 

  22. Zheng BL, Hao DJ, Lin B et al (2021) Puncture assisted by a “TINAVI” orthopaedic robot versus freehand puncture in vertebroplaty for osteoporotic vertebral compression fracture of the upper thoracic vertebra. Chin J Orthop Trauma 23:20–26

    Article  Google Scholar 

  23. Zhang ZT, Zhang XH, Wei ZH et al (2018) Comparison of outcomes of robot assisted and conventional percutaneous vertebroplasty on osteoporotic vertebral compression fracture. J Clin Orthop Res 3:205–208

    Article  Google Scholar 

  24. Yang N, Wang SB, Liu SF et al (2022) Effectiveness of robot-assisted percutaneous vertebroplasty for osteoporotic vertebral compression fracture in the elderly. West China Med J 37:1471–1475. https://doi.org/10.7507/1002-0179.202108283

    Article  Google Scholar 

  25. Xie HQ, Li XK, Sun J et al (2021) Percutaneous vertebroplasty with robotic orthopedic assistance versus conventional fluoroscopy assistance for treatment of osteoporotic vertebral compression fractures: a clinical comparative study. Guangdong Med J 42:1102–1106

    Article  Google Scholar 

  26. Tan L, Wen B, Guo Z et al (2023) Robot-assisted percutaneous vertebroplasty for osteoporotic vertebral compression fractures: a retrospective matched-cohort study. Int Orthop 47:595–604. https://doi.org/10.1007/s00264-022-05654-0

    Article  PubMed  Google Scholar 

  27. Shi B, Hu L, Du H et al (2021) Robot-assisted percutaneous vertebroplasty under local anaesthesia for osteoporotic vertebral compression fractures: a retrospective, clinical, non-randomized, controlled study. Int J Med Robot 17:e2216. https://doi.org/10.1002/rcs.2216

    Article  PubMed  Google Scholar 

  28. Guo S, Fu Q, Hang DH et al (2021) Effectiveness of Mazor spine robot -assisted percutaneous vertebroplasty with modified approach in treating lumbar osteoporotic vertebral compression fractures. Chin J Spine Spinal Cord 31:818–824. https://doi.org/10.3969/j.issn.1004-406X.2021.09.06

    Article  Google Scholar 

  29. Zhang K, She J, Zhu Y et al (2021) Risk factors of postoperative bone cement leakage on osteoporotic vertebral compression fracture: a retrospective study. J Orthop Surg Res 16:183. https://doi.org/10.1186/s13018-021-02337-1

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tang B, Cui L, Chen X et al (2021) Risk factors for cement leakage in percutaneous vertebroplasty for osteoporotic vertebral compression fractures: an analysis of 1456 vertebrae augmented by low-viscosity bone cement. Spine (Phila Pa 1976) 46:216–222. https://doi.org/10.1097/BRS.0000000000003773

    Article  PubMed  Google Scholar 

  31. Li M, Zhang T, Zhang R et al (2023) Systematic retrospective analysis of risk factors and preventive measures of bone cement leakage in percutaneous kyphoplasty. World Neurosurg 171:e828–e836. https://doi.org/10.1016/j.wneu.2022.12.117

    Article  PubMed  Google Scholar 

  32. Wang L, Li C, Wang Z et al (2023) Comparison of robot-assisted versus fluoroscopy-assisted minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar spinal diseases: 2-year follow-up. J Robot Surg 17:473–485. https://doi.org/10.1007/s11701-022-01442-5

    Article  PubMed  Google Scholar 

  33. Lin S, Wang F, Hu J et al (2022) Comparison of the accuracy and safety of TiRobot-assisted and fluoroscopy-assisted percutaneous pedicle screw placement for the treatment of thoracolumbar fractures. Orthop Surg 14:2955–2963. https://doi.org/10.1111/os.13504

    Article  PubMed  PubMed Central  Google Scholar 

  34. Probst T, Akalin ER, Giannouchos A et al (2022) Learning curves of robotic technology in an orthopedic teaching hospital. Orthopadie (Heidelb) 51:739–747. https://doi.org/10.1007/s00132-022-04287-w

    Article  CAS  PubMed  Google Scholar 

  35. Hijikata Y, Kotani Y, Suzuki A et al (2023) Protective attitudes toward occupational radiation exposure among spine surgeons in japan: an epidemiological description from the survey by the society for minimally invasive spinal treatment. Medicina (Kaunas). https://doi.org/10.3390/medicina59030545

    Article  PubMed  Google Scholar 

  36. Li J, Fang Y, Jin Z et al (2020) The impact of robot-assisted spine surgeries on clinical outcomes: a systemic review and meta-analysis. Int J Med Robot 16:1–14. https://doi.org/10.1002/rcs.2143

    Article  PubMed  Google Scholar 

  37. D’Souza M, Gendreau J, Feng A et al (2019) Robotic-assisted spine surgery: history, efficacy, cost, and future trends. Robot Surg 6:9–23. https://doi.org/10.2147/RSRR.S190720

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang RJ, Zhou LP, Zhang L et al (2022) Safety and risk factors of TINAVI robot-assisted percutaneous pedicle screw placement in spinal surgery. J Orthop Surg Res 17:379. https://doi.org/10.1186/s13018-022-03271-6

    Article  PubMed  PubMed Central  Google Scholar 

  39. Matur AV, Palmisciano P, Duah HO et al (2023) Robotic and navigated pedicle screws are safer and more accurate than fluoroscopic freehand screws: a systematic review and meta-analysis. Spine J 23:197–208. https://doi.org/10.1016/j.spinee.2022.10.006

    Article  PubMed  Google Scholar 

  40. Alsalmi S, Capel C, Chenin L et al (2018) Robot-assisted intravertebral augmentation corrects local kyphosis more effectively than a conventional fluoroscopy-guided technique. J Neurosurg Spine 30:289–295. https://doi.org/10.3171/2018.8.SPINE18197

    Article  PubMed  Google Scholar 

  41. Song Q, Zhao Y, Li D et al (2023) Effect of different bone cement distributions in percutaneous kyphoplasty on clinical outcomes for osteoporotic vertebral compression fractures: a retrospective study. Medicine (Baltimore) 102:e33309. https://doi.org/10.1097/MD.0000000000033309

    Article  CAS  PubMed  Google Scholar 

  42. Garcia D, Akinduro OO, De Biase G et al (2022) Robotic-assisted vs nonrobotic-assisted minimally invasive transforaminal lumbar interbody fusion: a cost-utility analysis. Neurosurgery 90:192–198. https://doi.org/10.1227/NEU.0000000000001779

    Article  PubMed  Google Scholar 

  43. Soliman MAR, Pollina J, Poelstra K et al (2022) Can a spine robot be more efficient and less expensive while maintaining accuracy? Int J Spine Surg 16:S50–S54. https://doi.org/10.14444/8277

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the Department of Statistics, Public Health College of Jilin University for their suggestions concerning the statistical analysis in this manuscript.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.                  

Author information

Authors and Affiliations

Authors

Contributions

Q-sZ designed the study protocol. XW and Y-hZ managed the literature search and data acquisition. XW and Y-hZ performed the statistical analysis and drafted the manuscript. Q-sZ provided critical revision to the manuscript. Q-sZ resolved ambiguities during the study and gave final approval of the manuscript.

Corresponding authors

Correspondence to Yu-hang Zhu or Qing-san Zhu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. All the authors have no conflict of interest to declare.

Informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 663 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhu, Yh. & Zhu, Qs. Efficacy and safety of robot-assisted versus fluoroscopy-assisted PKP or PVP for osteoporotic vertebral compression fractures: a systematic review and meta-analysis. J Robotic Surg 17, 2597–2610 (2023). https://doi.org/10.1007/s11701-023-01700-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-023-01700-0

Keywords

Navigation