Skip to main content
Log in

Functional and biological activities of Edible Bird’s Nest (EBN) protein by proteomic and bioinformatic analyses

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Edible Bird's Nest (EBN) is a traditional food in Southeast Asia that has been consumed for centuries. In addition to its high protein content, numerous researchers are now exploring the functional proteins of EBN, which have yet to be identified. The present study investigates the EBN proteome by integrating mass spectrometry with protein-based bioinformatics analysis. For protein recovery, three different precipitation techniques were employed; of these, the ammonium sulfate (AS) precipitation technique produced the highest protein yield (74.85%, p < 0.05). The AS precipitation technique was effective in preserving the integrity of EBN proteins as revealed by protein electrophoresis. A total of 35 proteins were identified in the EBN-AS proteins. The predominant function of EBN-AS proteins is immunomodulation, which was further confirmed by their antioxidant [DPPH· activity (23.86%) and ABTS·+ activity (41.97%)], anti-inflammatory [inhibition of nitric oxide production (22.84%), and inhibition of albumin denaturation (19.48%)] assay. Hence, EBN-AS proteins have the potential to regulate the immune system and could be used as natural ingredients for the development of functional foods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data are available upon reasonable request.

References

  1. L.H. Fasolin, R.N. Pereira, A.C. Pinheiro, J.T. Martins, C. Andrade, O. Ramos, A. Vicente, Emergent food proteins—towards sustainability, health and innovation. Food Res. Int. 125, 108586 (2019). https://doi.org/10.1016/j.foodres.2019.108586

    Article  CAS  PubMed  Google Scholar 

  2. A. Akyüz, S. Ersus, Optimization of enzyme assisted extraction of protein from the sugar beet (Beta vulgaris L.) leaves for alternative plant protein concentrate production. Food Chem. 335, 127673 (2021). https://doi.org/10.1016/j.foodchem.2020.127673

    Article  CAS  PubMed  Google Scholar 

  3. C. Tanger, J. Engel, U. Kulozik, Influence of extraction conditions on the conformational alteration of pea protein extracted from pea flour. Food Hydrocoll. 107, 105949 (2020). https://doi.org/10.1016/j.foodhyd.2020.105949

    Article  CAS  Google Scholar 

  4. Y. Etemadian, V. Ghaemi, A.R. Shaviklo, P. Pourashouri, A.R.S. Mahoonak, F. Rafipour, Development of animal/plant-based protein hydrolysate and its application in food, feed and nutraceutical industries: state of the art. J. Clean. Prod. 278, 123219 (2020). https://doi.org/10.1016/j.jclepro.2020.123219

    Article  CAS  Google Scholar 

  5. C. Pan, J. Ma, F. Tao, C. Ji, Y. Zhao, S. Chen, X. Yang, Novel insight into the antioxidant proteins derived from laver (Porphyra haitanensis) by proteomics analysis and protein-based bioinformatics. Food Biosci. 42, 101134 (2021). https://doi.org/10.1016/j.fbio.2021.101134

    Article  CAS  Google Scholar 

  6. J. Lu, Y. Guo, A. Muhmood, B. Zeng, Y. Qiu, P. Wang, L. Ren, Probing the antioxidant activity of functional proteins and bioactive peptides in Hermetia illucens larvae fed with food wastes. Sci. Rep. 12, 2799 (2022). https://doi.org/10.1038/s41598-022-06668-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Q.W.S. Lai, Q. Fan, B.Z. Zheng, Y. Chen, T.T. Dong, K.W.K. Tsim, Edible bird’s nest, an Asian health food supplement, possesses anti-inflammatory responses in restoring the symptoms of atopic dermatitis: an analysis of signaling cascades. Front. Pharmacol. 13, 941413 (2022). https://doi.org/10.3389/fphar.2022.941413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. C.H. Lee, T.H. Lee, S.L. Wong, B.B. Nyakuma, N. Hamdan, S.C. Khoo, H. Ramachandran, H. Jamaluddin, Characteristics and trends in global Edible Bird’s Nest (EBN) research (2002–2021): a review and bibliometric study. J. Food Meas. Charact. 2023, 1–22 (2023). https://doi.org/10.1007/s11694-023-02006-3

    Article  Google Scholar 

  9. M. Yuan, X. Lin, D. Wang, J. Dai, Proteins: Neglected active ingredients in edible bird’s nest. Chin. Herb. Med. 15, 383–390 (2023). https://doi.org/10.1016/j.chmed.2023.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  10. L.T. Hun, C.H. Lee, N.A. Azmi, R.K. Liew, N. Hamdan, S.L. Wong, P.Y. Ong, Amino acid determination by HPLC combined with multivariate approach for geographical classification of Malaysian edible bird’s nest. J. Food Compos. Anal. 107, 104399 (2022). https://doi.org/10.1016/j.jfca.2022.104399

    Article  CAS  Google Scholar 

  11. A.S. Babji, A.A.B. Sajak, N.A. Daud, H.A. Rahman, D. Sermwittayawong, K. Patninan, Potential anti-diabetic activities from edible bird nest and its hydrolysates. Curr. Adv. Chem. Biochem. 3, 77–86 (2021). https://doi.org/10.9734/bpi/cacb/v3/7819D

    Article  Google Scholar 

  12. C.Y. Wang, L.J. Cheng, B. Shen, Z.L. Yuan, Y.Q. Feng, S.H. Lu, Antihypertensive and antioxidant properties of sialic acid, the major component of edible bird’s nests. Curr. Top. Nutraceut. Res. 17, 376–379 (2019)

    Google Scholar 

  13. X.Y. Tan, A. Misran, L.D.J. Daim, B.Y.C. Lau, Optimization of protein extraction for proteomic analyses of fresh and frozen “Musang King” durian pulps. Food Chem. 343, 128471 (2021). https://doi.org/10.1016/j.foodchem.2020.128471

    Article  CAS  PubMed  Google Scholar 

  14. J. Bong, M. Middleditch, K.M. Loomes, J.M. Stephens, Proteomic analysis of honey. Identification of unique peptide markers for authentication of NZ mānuka (Leptospermum scoparium) honey. Food Chem. 350, 128442 (2021). https://doi.org/10.1016/j.foodchem.2020.128442

    Article  CAS  PubMed  Google Scholar 

  15. X.Q. Liu, X.T. Lai, S.W. Zhang, X.L. Huang, Q.X. Lan, Y. Li, B.F. Li, W. Chen, Q.L. Zhang, D.Z. Hong, G.W. Yang, Proteomic profile of edible bird’s nest proteins. J. Agric. Food Chem. 60, 12477–12481 (2012). https://doi.org/10.1021/jf303533p

    Article  CAS  PubMed  Google Scholar 

  16. Z.C.F. Wong, G.K.L. Chan, L. Wu, H.H.N. Lam, P. Yao, T.T.X. Dong, K.W.K. Tsim, A comprehensive proteomics study on Edible Bird’s Nest using new monoclonal antibody approach and application in quality control. J. Food Compos. Anal. 66, 145–151 (2018). https://doi.org/10.1016/j.jfca.2017.12.014

    Article  CAS  Google Scholar 

  17. X.T. Ma, J.K. Zhang, J.Z. Liang, X.L. Ma, R.R. Xing, J.X. Han, L.H. Guo, Y. Chen, Authentication of Edible Bird’s Nest (EBN) and its adulterants by integration of shotgun proteomics and scheduled multiple reaction monitoring (MRM) based on tandem mass spectrometry. Food Res. Int. 125, 108639 (2019). https://doi.org/10.1016/j.foodres.2019.108639

    Article  CAS  PubMed  Google Scholar 

  18. H.-K. Kong, Z. Chan, S.-W. Yan, P.-Y. Lo, W.-T. Wong, K.-H. Wong, C.-L. Lo, Revealing the species-specific genotype of the edible bird’s nest-producing swiftlet, Aerodramus fuciphagus and the proteome of edible bird’s nest. Food Res. Int. 160, 111670 (2022). https://doi.org/10.1016/j.foodres.2022.111670

    Article  CAS  PubMed  Google Scholar 

  19. T.H. Lee, S. Wong, C.H. Lee, N.A. Azmi, M. Darshini, S. Kavita, K.K. Cheng, Identification of Malaysia’s edible bird’s nest geographical origin using gel electrophoresis analysis. Chiang Mai Univ. J. Nat. Sci. 19, 379 (2018). https://doi.org/10.12982/cmujns.2020.0025

    Article  Google Scholar 

  20. R. Song, T. Liang, Q. Shen, J. Liu, Y. Lu, C. Tang, X. Chen, T. Hou, Y. Chen, The optimization of production and characterization of antioxidant peptides from protein hydrolysates of Agrocybe aegerita. LWT 134, 109987 (2020). https://doi.org/10.1016/j.lwt.2020.109987

    Article  CAS  Google Scholar 

  21. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  22. T.H. Lee, C.H. Lee, P.Y. Ong, S.L. Wong, N. Hamdan, H. Ya’akob, N.A. Azmi, S.C. Khoo, Z.A. Zakaria, K.-K. Cheng, Comparison of extraction methods of phytochemical compounds from white flower variety of Melastoma malabathricum. S. Afr. J. Bot. 148, 170–179 (2022). https://doi.org/10.1016/j.sajb.2022.04.026

    Article  CAS  Google Scholar 

  23. S. Hu, J. Yuan, J. Gao, Y. Wu, X. Meng, P. Tong, H. Chen, Antioxidant and anti-inflammatory potential of peptides derived from in vitro gastrointestinal digestion of germinated and heat-treated foxtail millet (Setaria italica) proteins. J. Agric. Food Chem. 68, 9415–9426 (2020). https://doi.org/10.1021/acs.jafc.0c03732

    Article  CAS  PubMed  Google Scholar 

  24. M.Y. Yew, R.Y. Koh, S.M. Chye, S.A.Z. Abidin, I. Othman, K.Y. Ng, Neurotrophic properties and the de novo peptide sequencing of edible bird’s nest extracts. Food Biosci. 32, 100466 (2019). https://doi.org/10.1016/j.fbio.2019.100466

    Article  CAS  Google Scholar 

  25. M. González-Amado, A.P. Tavares, M.G. Freire, A. Soto, O. Rodríguez, Recovery of lactose and proteins from cheese whey with poly (ethylene) glycol/sulfate aqueous two-phase systems. Sep. Purif. Technol. 255, 117686 (2021). https://doi.org/10.1016/j.seppur.2020.117686

    Article  CAS  Google Scholar 

  26. Z. Li, X. Huang, Q. Tang, M. Ma, Y. Jin, L. Sheng, Functional properties and extraction techniques of chicken egg white proteins. Foods 11, 2434 (2022). https://doi.org/10.3390/foods11162434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. K.W. Chew, S.R. Chia, S.Y. Lee, L. Zhu, P.L. Show, Enhanced microalgal protein extraction and purification using sustainable microwave-assisted multiphase partitioning technique. Chem. Eng. J. 367, 1–8 (2019). https://doi.org/10.1016/j.cej.2019.02.131

    Article  CAS  Google Scholar 

  28. M. Laroche, V. Perreault, A. Marciniak, A. Gravel, J. Chamberland, A. Doyen, Comparison of conventional and sustainable lipid extraction methods for the production of oil and protein isolate from edible insect meal. Foods 8, 572 (2019). https://doi.org/10.3390/foods8110572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J.G. de Oliveira Filho, M.B. Egea, Sunflower seed byproduct and its fractions for food application: an attempt to improve the sustainability of the oil process. J. Food Sci. 86, 1497–1510 (2021). https://doi.org/10.1111/1750-3841.15719

    Article  CAS  PubMed  Google Scholar 

  30. N. Ullah, M.U. Rehman, A. Sarwar, M. Nadeem, R. Nelofer, H.A. Shakir, M. Irfan, M. Idrees, S. Naz, G. Nabi, Purification, characterization, and application of alkaline protease enzyme from a locally isolated Bacillus cereus strain. Fermentation 8, 628 (2022). https://doi.org/10.3390/fermentation8110628

    Article  CAS  Google Scholar 

  31. K. Soetan, D. Animasaun, Characterization and profiling of seed storage proteins of some underutilized beans varieties using SDS-PAGE. J. Anim. Plant Sci. 29, 1622–1629 (2019)

    CAS  Google Scholar 

  32. L.L. Guo, Y.J. Wu, M.C. Liu, B. Wang, Y.Q. Ge, Y. Chen, Determination of Edible Bird’s Nests by FTIR and SDS-PAGE coupled with multivariate analysis. Food Control 80, 259–266 (2017). https://doi.org/10.1016/j.foodcont.2017.05.007

    Article  CAS  Google Scholar 

  33. T.H. Yan, S.J. Lim, A.S. Babji, M.H. Rawi, S.R. Sarbini, Enzymatic hydrolysis: sialylated mucin (SiaMuc) glycoprotein of edible swiftlet’s nest (ESN) and its molecular weight distribution as bioactive ESN SiaMuc-glycopeptide hydrolysate. Int. J. Biol. Macromol. 175, 422–431 (2021). https://doi.org/10.1016/j.ijbiomac.2021.02.007

    Article  CAS  Google Scholar 

  34. T.H. Yan, A.S. Babji, S.J. Lim, S.R. Sarbini, A Systematic Review of Edible Swiftlet’s Nest (ESN): nutritional bioactive compounds, health benefits as functional food, and recent development as bioactive ESN glycopeptide hydrolysate. Trends Food Sci. Technol. 115, 117–132 (2021). https://doi.org/10.1016/j.tifs.2021.06.034

    Article  CAS  Google Scholar 

  35. M. Ghassem, K. Arihara, S. Mohammadi, N.A. Sani, A.S. Babji, Identification of two novel antioxidant peptides from edible bird’s nest (Aerodramus fuciphagus) protein hydrolysates. Food Funct. 8, 2046–2052 (2017). https://doi.org/10.1039/c6fo01615d

    Article  CAS  PubMed  Google Scholar 

  36. G. Geng, C. Xu, N. Peng, Y. Li, J. Liu, J. Wu, J. Liang, Y. Zhu, L. Shi, PTBP1 is necessary for dendritic cells to regulate T-cell homeostasis and antitumour immunity. Immunology 163, 74–85 (2021). https://doi.org/10.1111/imm.13304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. E. Monzón-Casanova, L.S. Matheson, K. Tabbada, K. Zarnack, C.W. Smith, M. Turner, Polypyrimidine tract-binding proteins are essential for B cell development. Elife 9, e53557 (2020). https://doi.org/10.7554/eLife.53557

    Article  PubMed  PubMed Central  Google Scholar 

  38. R. Zhao, G. Li, X.-J. Kong, X.-Y. Huang, W. Li, Y.-Y. Zeng, X.-P. Lai, The improvement effects of edible bird’s nest on proliferation and activation of B lymphocyte and its antagonistic effects on immunosuppression induced by cyclophosphamide. Drug Des. Dev. Ther. 10, 371–381 (2016). https://doi.org/10.2147/DDDT.S88193

    Article  Google Scholar 

  39. T. Dobutr, W. Kantamala, S. Phimwapi, N. Jangpromma, P. Tippayawat, S. Boonlue, J. Daduang, S. Klaynongsruang, S. Poopornchai, S. Daduang, The effects of Edible Bird’s Nest on T-lymphocyte proliferation, secondary lymphoid organs, and interleukin-2 production. J. Funct. Foods. 90, 104977 (2022). https://doi.org/10.1016/j.jff.2022.104977

    Article  CAS  Google Scholar 

  40. R. Dueva, G. Iliakis, Replication protein A: a multifunctional protein with roles in DNA replication, repair and beyond. NAR Cancer. 2, zcaa022 (2020). https://doi.org/10.1093/narcan/zcaa022

    Article  PubMed  PubMed Central  Google Scholar 

  41. B.M. Byrne, G.G. Oakley, Replication protein A, the laxative that keeps DNA regular: the importance of RPA phosphorylation in maintaining genome stability. Semin. Cell Dev. Biol. 86, 112–120 (2019)

    Article  CAS  PubMed  Google Scholar 

  42. M. Algethami, M.S. Toss, C.L. Woodcock, C. Jaipal, J. Brownlie, A. Shoqafi, A. Alblihy, K.A. Mesquita, A.R. Green, N.P. Mongan, Unravelling the clinicopathological and functional significance of replication protein A (RPA) heterotrimeric complex in breast cancers. NPJ Breast Cancer 9, 18 (2023). https://doi.org/10.1038/s41523-023-00524-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. T. Lee, Y. Maruthai, N. Abd Aziz, K. Chua, N. Hamdan, C. Lee, N. Azmi, Chemopreventive and immunoadjuvant properties of standardised Edible Bird’s Nest extract on human breast cancer cell line. Int. Food Res. J. 30, 472–486 (2023). https://doi.org/10.47836/ifrj.30.2.17

    Article  CAS  Google Scholar 

  44. S. Ward, J.M. O’Sullivan, J.S. O’Donnell, von Willebrand factor sialylation—a critical regulator of biological function. J. Thromb. Haemost. 17, 1018–1029 (2019). https://doi.org/10.1111/jth.14471

    Article  CAS  PubMed  Google Scholar 

  45. E. Kaschina, U.M. Steckelings, T. Unger, Hypertension and the renin-angiotensin-aldosterone system, in Encyclopedia of Endocrine Diseases (Elsevier Editora, Rio de Janeiro, 2018), 505–510

  46. H.K. Kong, K.H. Wong, S.C. Lo, Identification of peptides released from hot water-insoluble fraction of Edible Bird’s Nest under simulated gastrointestinal conditions. Food Res. Int. 85, 19–25 (2016). https://doi.org/10.1016/j.foodres.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  47. R. Ramachandran, A.S. Babji, N.A. Sani, Antihypertensive potential of bioactive hydrolysate from edible bird’s nest. AIP Conf. Proc. 1940(1), 020099 (2018)

    Article  Google Scholar 

  48. Y. Zhao, Q. Tao, J. Wu, H. Liu, DMBT1 has a protective effect on allergic rhinitis. Biomed. Pharmacother. 121, 109675 (2020). https://doi.org/10.1016/j.biopha.2019.109675

    Article  CAS  PubMed  Google Scholar 

  49. N. Matsukawa, M. Matsumoto, W. Bukawa, H. Chiji, K. Nakayama, H. Hara, T. Tsukahara, Improvement of bone strength and dermal thickness due to dietary Edible Bird’s Nest extract in ovariectomized rats. Biosci. Biotechnol. Biochem. 75, 590–592 (2011). https://doi.org/10.1271/bbb.100705

    Article  CAS  PubMed  Google Scholar 

  50. S. Bu, Y. Lv, Y. Liu, S. Qiao, H. Wang, Zinc finger proteins in neuro-related diseases progression. Front. Neurosci. 15, 760567 (2021). https://doi.org/10.3389/fnins.2021.760567

    Article  PubMed  PubMed Central  Google Scholar 

  51. M. Cassandri, A. Smirnov, F. Novelli, C. Pitolli, M. Agostini, M. Malewicz, G. Melino, G. Raschellà, Zinc-finger proteins in health and disease. Cell Death Discov. 3, 1–12 (2017). https://doi.org/10.1038/cddiscovery.2017.71

    Article  CAS  Google Scholar 

  52. L. Zhang, Y. Yang, D. Geng, Y. Wu, Identification of potential therapeutic targets and molecular regulatory mechanisms for osteoporosis by bioinformatics methods. Biomed. Res. Int. 2021, 1–10 (2021). https://doi.org/10.1155/2021/8851421

    Article  CAS  Google Scholar 

  53. J.-T. Hou, K.-K. Yu, K. Sunwoo, W.Y. Kim, S. Koo, J. Wang, W.X. Ren, S. Wang, X.-Q. Yu, J.S. Kim, Fluorescent imaging of reactive oxygen and nitrogen species associated with pathophysiological processes. Chemistry 6, 832–866 (2020). https://doi.org/10.1016/j.chempr.2019.12.005

    Article  CAS  Google Scholar 

  54. S. Guha, K. Majumder, Structural-features of food-derived bioactive peptides with anti-inflammatory activity: a brief review. J. Food Biochem. 43, e12531 (2019). https://doi.org/10.1111/jfbc.12531

    Article  CAS  PubMed  Google Scholar 

  55. Z. Tang, H. Chen, H. He, C. Ma, Assays for alkaline phosphatase activity: progress and prospects. TrAC Trends Anal. Chem. 113, 32–43 (2019). https://doi.org/10.1016/j.trac.2019.01.019

    Article  CAS  Google Scholar 

  56. Y. Lin, T. Qiu, G. Wei, Y. Que, W. Wang, Y. Kong, T. Xie, X. Chen, Role of histone post-translational modifications in inflammatory diseases. Front. Immunol. 13, 852272 (2022). https://doi.org/10.3389/fimmu.2022.852272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. F. Limanaqi, F. Biagioni, A. Gaglione, C.L. Busceti, F. Fornai, A sentinel in the crosstalk between the nervous and immune system: the (immuno)-proteasome. Front. Immunol. 10, 628 (2019). https://doi.org/10.3389/fimmu.2019.00628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. H. Kabata, D. Artis, Neuro-immune crosstalk and allergic inflammation. J. Clin. Investig. 129, 1475–1482 (2019). https://doi.org/10.1172/JCI124609

    Article  PubMed  PubMed Central  Google Scholar 

  59. A.M. Giudetti, M. Salzet, T. Cassano, Oxidative stress in the ageing brain: nutritional and pharmacological interventions for neurodegenerative disorders. Oxid. Med. Cell. Longev. 2018, 1–2 (2018). https://doi.org/10.1155/2018/3416028

    Article  Google Scholar 

  60. S. Behrouz, S. Saadat, A. Memarzia, H. Sarir, G. Folkerts, M.H. Boskabady, The antioxidant, anti-inflammatory and immunomodulatory effects of camel milk. Front. Immunol. 13, 855342 (2022). https://doi.org/10.3389/fimmu.2022.855342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. P.L. Tang, H.S. Goh, S.S. Sia, Combined enzymatic hydrolysis and herbal extracts fortification to boost in vitro antioxidant activity of Edible Bird’s Nest solution. Chin. Herb. Med. 13, 549–555 (2021). https://doi.org/10.1016/j.chmed.2021.10.005

    Article  PubMed  PubMed Central  Google Scholar 

  62. A.S. Babji, I.K.E. Syarmila, D.N. Aliah, M.N. Nadia, D.H. Akbar, A.S. Norrakiah, M. Ghassem, L. Najafian, M.Y. Salma, Assessment on bioactive components of hydrolysed edible bird nest. Int. Food Res. J. 25, 1936–1941 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The study was funded by Universiti Teknologi Malaysia (UTM) through an Industry/International Incentive Grant (Grant No: Q.J130000.3651.02M53).

Author information

Authors and Affiliations

Authors

Contributions

Chia Hau Lee: Investigation, Formal analysis, Writing—Original Draft.: Norfadilah Hamdan: Conceptualization, Methodology, Formal analysis.: Bemgba Bevan Nyakuma: Writing—Review & Editing.: Syie Luing Wong: Visualization.: Keng Yinn Wong: Software.: Haryati Jamaluddin: Resources, Supervision.: Ting Hun Lee: Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Ting Hun Lee.

Ethics declarations

Conflict of interest

The authors declare that there were no conflicts of interest.

Ethical approval

This study does not present experiments with humans or animals.

Consent for publication

The authors approve the submission and publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 70 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C.H., Hamdan, N., Nyakuma, B.B. et al. Functional and biological activities of Edible Bird’s Nest (EBN) protein by proteomic and bioinformatic analyses. Food Measure 18, 3018–3031 (2024). https://doi.org/10.1007/s11694-024-02383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02383-3

Keywords

Navigation