Skip to main content
Log in

Viability of the probiotic bacterium (Bifidobacterium animalis ssp. Lactis) in umbu-caja pulp

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Due to the elevated nutritional value and the exotic characteristics of their flavor and aroma, species of the Spondias genus are highly prominent in the northeast of Brazil. Considering the enhanced economic potential of umbu-cajá fruits, the present study aimed to use the pulp as a medium for developing the probiotic culture Bifidobacterium animalis ssp. lactis and to evaluate its viability in a new food matrix over a 28-day storage period at refrigeration temperatures (4 ± 2 °C), without the use of animal-derived products. A kinetic study was conducted to determine the optimal conditions for the stability of the strain used, initially adjusting the pH to 7.0 and incubating at 37 °C for 24 h. The fresh and probiotic pulps underwent physicochemical and chemical analyses, and antioxidant activity was determined. The viability of the probiotic culture was evaluated with respect to pH, acidity, total soluble solids, and the viable cell count on days 1–28. The probiotic umbu-cajá pulp maintained its nutritional properties and the viability of the culture during the 28 days of storage, with a cell count of approximately 10 log CFU mL−1, exceeding the threshold required for a product to be considered to have therapeutic benefits, thus classifying it as a functional food.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Research data are not shared.

References

  1. A.O.A.C., Official Methods of Analysis of AOAC International, 20th ed. (AOAC international, Rockville, 2016).

  2. D. Adamczyk, D. Jaworska, D. Affeltowicz, D. Maison, Plant-based dairy alternatives: consumers’ perceptions, motivations, and barriers-results from a qualitative study in Poland, Germany, and France. Nutrients 14(10), 2171 (2022). https://doi.org/10.3390/nu14102171

    Article  PubMed  PubMed Central  Google Scholar 

  3. S. Aghamohammad, A. Hafezi, M. Rohani, Probiotics as functional foods: how probiotics can alleviate the symptoms of neurological disabilities. Biomed. Pharmacother. 163, 114816 (2023). https://doi.org/10.1016/j.biopha.2023.114816

    Article  CAS  PubMed  Google Scholar 

  4. A.P. Albuquerque, T.J.A. Rodrigues, J.L. Cavalcante Neto, A.P.T. Rocha, Utilização de polpa de frutas em pó carregadoras de probióticos como alimento funcional: aspectos gerais e perspectivas. Braz. J. Food Technol. (2021). https://doi.org/10.1590/1981-6723.31019

    Article  Google Scholar 

  5. ANVISA, Agência Nacional de Vigilância Sanitária. Informe Técnico no. 33, de 25 de outubro de 2007. Hidróxido de sódio - INS 524 (2007)

  6. P.D.P.M. Barbosa, D.A. Gallina, Viabilidade de bactérias (starter e probióticas) em bebidas elaboradas com iogurte e polpa de manga. Rev. Inst. Laticínios Cândido Tostes 72(2), 85–95 (2017). https://doi.org/10.14295/2238-6416.v72i2.580

    Article  CAS  Google Scholar 

  7. L.A. Caldeira, É.E. Alves, A.D.M.F. Ribeiro, V.R. Rocha Júnior, A.B. Antunes, A.F.D. Reis et al., Viability of probiotic bacteria in bioyogurt with the addition of honey from Jataí and Africanized bees. Pesq. Agrop. Bras 53, 206–211 (2018). https://doi.org/10.1590/S0100-204X2018000200009

    Article  Google Scholar 

  8. M.P. Costa, B.S. Frasao, A.C.O. Silva, M.Q. Freitas, R.M. Franco, C.A. Conte-Junior, Cupuassu (Theobroma grandiflorum) pulp, probiotic, and prebiotic: influence on color, apparent viscosity, and texture of goat milk yogurts. J. Dairy Sci. 98(9), 5995–6003 (2015). https://doi.org/10.3168/jds.2015-9738

    Article  CAS  PubMed  Google Scholar 

  9. Y. Cui, X. Qu, Genetic mechanisms of prebiotic carbohydrate metabolism in lactic acid bacteria: emphasis on Lacticaseibacillus casei and Lacticaseibacillus paracasei as flexible, diverse and outstanding prebiotic carbohydrate starters. Trends Food Sci. Technol. 115, 486–499 (2021). https://doi.org/10.1016/j.tifs.2021.06.058

    Article  CAS  Google Scholar 

  10. J.C. De Man, D. Rogosa, M.E. Sharpe, A medium for the cultivation of lactobacilli. J. Appl. Microbiol. 23(1), 130–135 (1960). https://doi.org/10.1111/j.1365-2672.1960.tb00188.x

    Article  Google Scholar 

  11. C.O. Dias, M.C. Scariot, R.D. de Mello Castanho Amboni, A.C.M. Arisi, Application of propidium monoazide coupled with quantitative PCR to evaluate cell viability of Bifidobacterium animalis subsp. lactis in a non-dairy probiotic beverage. Ann. Microbiol. 70(1), 1–7 (2020). https://doi.org/10.1186/s13213-020-01566-9

    Article  CAS  Google Scholar 

  12. B. Dzandu, A. Chotiko, S. Sathivel, Antioxidant activity and viability of Lacticaseibacillus rhamnosus, Lacticaseibacillus casei, and co-culture in fermented tomato juice during refrigerated storage. Food Biosci. 50, 102085 (2022). https://doi.org/10.1016/j.fbio.2022.102085

    Article  CAS  Google Scholar 

  13. E. Ephrem, A. Najjar, C. Charcosset, H. Greige-Gerges, Encapsulation of natural active compounds, enzymes, and probiotics for fruit juice fortification, preservation, and processing: an overview. J. Funct. Foods 48, 65–84 (2018). https://doi.org/10.1016/j.jff.2018.06.021

    Article  CAS  Google Scholar 

  14. D.A. Gallina, R.C.S.C. Ormenese, A.O. Garcia, Iogurte probiótico com polpa de frutas vermelhas: caracterização físico química e microbiológica, aceitabilidade sensorial e viabilidade dos probióticos. Rev. Inst. Laticínios Cândido Tostes 73(4), 196–208 (2018). https://doi.org/10.14295/2238-6416.v73i4.681

    Article  CAS  Google Scholar 

  15. D.A. Gallina, A.T. Silva, F.K.H. de Souza Trento, J. Carusi, Caracterização de leites fermentados com e sem adição de probióticos e prebióticos e avaliação da viabilidade de bactérias láticas e probióticas durante a vida-de-prateleira. J. Health Sci. (2011). https://doi.org/10.17921/2447-8938.2011v13n4p%25p

    Article  Google Scholar 

  16. P.J. Gondim, S.D.M. Silva, W.E. Pereira, A.L. Dantas, J.R. Chaves Neto, L.F.D. Santos, Qualidade de frutos de acessos de umbu-cajazeira (Spondias sp.). Rev. Bras. Engenh. Agríc. Ambient. 17, 1217–1221 (2013). https://doi.org/10.1590/S1415-43662013001100013

    Article  Google Scholar 

  17. W. Guo, M. Chen, S. Cui, X. Tang, Q. Zhang, J. Zhao et al., Dynamics changes in physicochemical properties, volatile metabolites, non-volatile metabolites, and physiological functions of barley juice during Bifidobacterium infantis fermentation. Food Chem. 407, 135201 (2023). https://doi.org/10.1016/j.foodchem.2022.135201

    Article  CAS  PubMed  Google Scholar 

  18. ISO, Organização Internacional de Normalização. ISO 20128:2006; Produtos lácteos—Enumeração de presumíveis Lactobacillus acidophilus em meio seletivo—Técnica de contagem de colônias a 37 °C. Genebra, Suíça (2006)

  19. A. Kaur, M. Arora, G. Pandove, Probiotics and its health benefits. J. Glob. Biosci. 3(3), 686–693 (2014)

    Google Scholar 

  20. T. Keller, H. Schwager, Air pollution and ascorbic acid. Eur. J. For. Pathol. 7(6), 338–350 (1977). https://doi.org/10.1111/j.1439-0329.1977.tb00603.x

    Article  CAS  Google Scholar 

  21. S. Knezevic, A. Ghafoor, S. Mehri, A. Barazi, M. Dziura, J.F. Trant, C.A. Dieni, Catechin and other catechol-containing secondary metabolites: bacterial biotransformation and regulation of carbohydrate metabolism. PharmaNutrition 17, 100273 (2021). https://doi.org/10.1016/j.phanu.2021.100273

    Article  CAS  Google Scholar 

  22. A. Kumar, D. Kumar, Development of antioxidant rich fruit supplemented probiotic yogurts using free and microencapsulated Lactobacillus rhamnosus culture. J. Food Sci. Technol. 53, 667–675 (2016). https://doi.org/10.1007/s13197-015-1997-7

    Article  CAS  PubMed  Google Scholar 

  23. S.T. Leite, C.D. Roberto, P.I. Silva, R.V.D. Carvalho, Polpa de juçara: Fonte de compostos fenólicos, aumento da atividade antioxidante e da viabilidade de bactérias probióticas de iogurte. Rev. Ceres 65, 16–23 (2018). https://doi.org/10.1590/0034-737X201865010003

    Article  CAS  Google Scholar 

  24. L.Q. Li, X. Chen, J. Zhu, S.Y. Zhang, S.Q. Chen, X. Liu et al., Advances and challenges in interaction between heteroglycans and Bifidobacterium: utilization strategies, intestinal health and future perspectives. Trends Food Sci. Technol. 134, 112–122 (2023). https://doi.org/10.1016/j.tifs.2023.02.018

    Article  CAS  Google Scholar 

  25. H.K. Lichtenthaler, Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382 (1987). https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  26. W.D.L. Lima, S.S. Monteiro, M.A.D.B. Pasquali, Study of fermentation strategies by Lactobacillus gasseri for the production of probiotic food using passion fruit juice combined with green tea as raw material. Foods 11(10), 1471 (2022). https://doi.org/10.3390/foods11101471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. F.K.E. Marius, K.P. Marie, M. Blandine, T.P. Laverdure, F.T.U. Daquain, Z.N. François, Development of a non-dairy probiotic beverage based on sorrel and pineapple juices using Lacticaseibacillus paracasei 62L. J. Agric. Food Res. 14, 100688 (2023). https://doi.org/10.1016/j.jafr.2023.100688

    Article  CAS  Google Scholar 

  28. A.N.A. Martins, M.A.D.B. Pasquali, C.E. Schnorr, J.J.A. Martins, G.T. de Araújo, A.P.T. Rocha, Development and characterization of blends formulated with banana peel and banana pulp for the production of blends powders rich in antioxidant properties. J. Food Sci. Technol. 56, 5289–5297 (2019). https://doi.org/10.1007/s13197-019-03999-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. G.L. Miller, Modified DNS method for reducing sugars. Anal. Chem. 31(3), 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  30. S.S. Monteiro, R.L. Almeida, N.C. Santos, E.M. Pereira, A.P. Silva, H.M.L. Oliveira, M.A.D.B. Pasquali, New functional foods with cactus components: sustainable perspectives and future trends. Foods 12(13), 2494 (2023). https://doi.org/10.3390/foods12132494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. K.S. Moresco, A.K. Silveira, C.E. Schnorr, F. Zeidán-Chuliá, R.C. Bortolin, L.D.S. Bittencourt, J.C.F. Moreira, Supplementation with achyrocline satureioides inflorescence extracts to pregnant and breastfeeding rats induces tissue-specific changes in enzymatic activity and lower neonatal survival. Biomedicines 5(3), 53 (2017). https://doi.org/10.3390/biomedicines5030053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. D. Oliveira, L. Vidal, G. Ares, E.H. Walter, A. Rosenthal, R. Deliza, Sensory, microbiological and physicochemical screening of probiotic cultures for the development of non-fermented probiotic milk. LWT Food Sci. Technol. 79, 234–241 (2017). https://doi.org/10.1016/j.lwt.2017.01.020

    Article  CAS  Google Scholar 

  33. M. Perricone, A. Bevilacqua, C. Altieri, M. Sinigaglia, M.R. Corbo, Challenges for the production of probiotic fruit juices. Beverages 1(2), 95–103 (2015). https://doi.org/10.3390/beverages1020095

    Article  CAS  Google Scholar 

  34. T.J.A. Rodrigues, A.P. Albuquerque, A.V.S.D. Azevedo, L.R.D. Silva, M.A.D.B. Pasquali, G.T.D. Araújo et al., Production and shelf-life study of probiotic caja (Spondias mombin L.) pulp using Bifidobacterium animalis ssp. lactis B94. Foods 11(13), 1838 (2022). https://doi.org/10.3390/foods11131838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M. Saarela, H.L. Alakomi, J. Mättö, A.M. Ahonen, A. Puhakka, S. Tynkkynen, Improving the storage stability of Bifidobacterium breve in low pH fruit juice. Int. J. Food Microbiol. 149(1), 106–110 (2011). https://doi.org/10.1016/j.ijfoodmicro.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  36. E.F. Santos, R.R. de Araújo, E.E.P. de Lemos, L. Endres, Quantificação de compostos bioativos em frutos de umbu (Spondias tuberosa Arr. Câm.) e Cajá (Spondias mombin L.) nativos de alagoas. Rev. Ciênc. Agríc. 16(1), 21–29 (2018). https://doi.org/10.28998/rca.v16i1.3484

    Article  Google Scholar 

  37. M. Sharma, A. Wasan, R.K. Sharma, Recent developments in probiotics: an emphasis on Bifidobacterium. Food Biosci. 41, 100993 (2021). https://doi.org/10.1016/j.fbio.2021.100993

    Article  CAS  Google Scholar 

  38. A.B. Shori, Influence of food matrix on the viability of probiotic bacteria: a review based on dairy and non-dairy beverages. Food Biosci. 13, 1–8 (2016). https://doi.org/10.1016/j.fbio.2015.11.001

    Article  CAS  Google Scholar 

  39. T.M.D. Silva, J.S. Barin, E.J. Lopes, A.J. Cichoski, E.M.D.M. Flores, C.D.B.D. Silva, C.R.D. Menezes, Development, characterization and viability study of probiotic microcapsules produced by complex coacervation followed by freeze-drying. Ciênc. Rural (2019). https://doi.org/10.1590/0103-8478cr20180775

    Article  Google Scholar 

  40. A.L. Waterhouse, V.F. Laurie, Oxidation of wine phenolics: a critical evaluation and hypotheses. Am. J. Enol. Vitic. 57(3), 306–313 (2006). https://doi.org/10.5344/ajev.2006.57.3.306

    Article  CAS  Google Scholar 

  41. Y. Wu, S. Li, Y. Tao, D. Li, Y. Han, P.L. Show et al., Fermentation of blueberry and blackberry juices using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation. Food Chem. 348, 129083 (2021). https://doi.org/10.1016/j.foodchem.2021.129083

    Article  CAS  PubMed  Google Scholar 

  42. M.L. Zeraik, E.F. Queiroz, L. Marcourt, O. Ciclet, I. Castro-Gamboa, D.H.S. Silva et al., Antioxidants, quinone reductase inducers and acetylcholinesterase inhibitors from Spondias tuberosa fruits. J. Funct. Foods 21, 396–405 (2016). https://doi.org/10.1016/j.jff.2015.12.009

    Article  CAS  Google Scholar 

  43. X. Zhao, J. Zhong, C. Wei, C.W. Lin, T. Ding, Current perspectives on viable but non-culturable state in foodborne pathogens. Front. Microbiol. 8, 580 (2017). https://doi.org/10.3389/fmicb.2017.00580

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Apoio à Pesquisa do Estado da Paraíba (FAPESQ-PB) for grant funding. The authors are grateful also to the Federal University of Campina Grande (UFCG) for technical support.

Funding

This research was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Grant Number 307060/2017-9 for financial support.

Author information

Authors and Affiliations

Authors

Contributions

APA: conceptualization, methodology, investigation, formal analysis, writing (draft and review), and visualization. TJAR: formal analysis and methodology. YASB: formal analysis ADFV: data curation. RLJA: software. NCS: formal analysis. DSG: conceptualization. GTA and APTR: supervision, project administration, funding and writing (draft and review). All authors read and approved the manuscript.

Corresponding author

Correspondence to Newton Carlos Santos.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Ethics approval was not required for this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albuquerque, A.P., Rodrigues, T.J.A., Beserra, Y.A.S. et al. Viability of the probiotic bacterium (Bifidobacterium animalis ssp. Lactis) in umbu-caja pulp. Food Measure 18, 812–822 (2024). https://doi.org/10.1007/s11694-023-02205-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02205-y

Keywords

Navigation