Skip to main content
Log in

EPR characterization of the gamma irradiation effect on antiradical activity and free radicals generation of dried rosehip (Rosa canina L.) seeds

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Rosehip seeds (RS) are rich in important dietary antioxidants such as polyphenolic substances, vitamins and carotenoids. In the present study dried RS samples were exposed to gamma-irradiation at doses of 10 and 25 kGy. Free radicals, induced in seeds by ionizing rays and their time stability were investigated. Electron Paramagnetic Resonance (EPR) study revealed that carbon-centered radicals from the cellulose are generated in the samples irradiated by both doses, in addition spectrum, attributed to starch free radicals was observed at 25 kGy irradiated seeds. The EPR signals were reduced significantly for 120 days after treatment. The effect of irradiation on antiradical activity of rosehip defatted seed extracts was evaluated using the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). The results show that free radical scavenging activity increased in irradiated rosehip seeds samples with approximately 19% compared to that of untreated seeds. For evaluation of antiradical activity of the sample extracts before and after irradiation the IC50 as well as Trolox Equivalent Antioxidant Capacity (TEAC) value were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data are available from the corresponding author on reasonable request.

References

  1. I. Roman, A. Stănilă, S. Stănilă, Chem. Cent. J. 7, 1 (2013). https://doi.org/10.1186/1752-153X-7-73

    Article  CAS  Google Scholar 

  2. V.T. Tumbas, J.M. Čanadanović-Brunet, D.D. Četojević-Simin, G.S. Ćetković, S.M. Đilas, L. Gille, J. Sci. Food Agric. 92, 1273 (2012). https://doi.org/10.1002/jsfa.4695

    Article  CAS  PubMed  Google Scholar 

  3. A. Bhave, V. Schulzova, H. Chmelarova, L. Mrnka, J. Hajslova, J. Food Drug Anal. 25, 681 (2017). https://doi.org/10.1016/j.jfda.2016.12.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. N. Demir, O. Yildiz, M. Alpaslan, A. Hayaloglu, LWT – Food Sci. Technol. 57, 126 (2014). https://doi.org/10.1016/j.lwt.2013.12.038

    Article  CAS  Google Scholar 

  5. L. Andronie, L. Holonec, I. Pop, A.M. Truta, A. Odagiu, T. Sălăgean, R. Sobolu, A. Coroian, I. Balta, E.E. Şuba, Not Bot. Horti Agrobo. 47, 1178 (2019). https://doi.org/10.15835/nbha47411709

    Article  CAS  Google Scholar 

  6. M. Igual, P. García-Herrera, R.M. Cámara, J. Martíó, P. García-Segovia, M. Cámara, Molecules. 27, 4737 (2022). https://doi.org/10.3390/molecules27154737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. B. Medveckienė, J. Kulaitienė, E. Jarienė, N. Vaitkevičienė, E. Hallman, Appl. Sci. 10, 5337 (2020). https://doi.org/10.3390/app10155337

    Article  CAS  Google Scholar 

  8. A. Butkevičiūtė, R. Urbštaitė, M. Liaudanskas, K. Obelevičius, V. Janulis, Antioxidants. 11, 912 (2022). https://doi.org/10.3390/antiox11050912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. H.Ilyasoğlu, Int. J. Food Prop. 17, 1591 (2014). https://doi.org/10.1080/10942912.2013.777075

  10. J. Farkas, C. Mohácsi-Farkas, Trends Food Sci. Technol. 22, 121 (2011). https://doi.org/10.1016/j.tifs.2010.04.002

    Article  CAS  Google Scholar 

  11. M.H. Başkan, Z. Kartal, M. Aydın, Radiat. Eff. Defects Solids. 170, 989 (2015). https://doi.org/10.1080/10420150.2016.1153093

    Article  CAS  Google Scholar 

  12. B. Darfour, S. Agbenyegah, D.O. Ofosu, A.A. Okyere, I.K. Asare, Radiat. Phys. Chem. 102, 153 (2014). https://doi.org/10.1016/j.radphyschem.2014.05.003

    Article  CAS  Google Scholar 

  13. E. Arjeh, M. Barzegar, M.A. Sahari, Radiat. Phys. Chem. 114, 18 (2015). https://doi.org/10.1177/1082013218808902

    Article  CAS  Google Scholar 

  14. L.G.L. Gerolis, F.S. Lameiras, K. Krambrock, Radiat. Phys. Chem. 130, 177 (2017). https://doi.org/10.1002/vjch.202200041

    Article  CAS  Google Scholar 

  15. S. Taheri, T. Abdullah, E. Karimi, E. Oskoueian, M. Ebrahimi, Int. J. Mol. Sci. 15, 13077 (2014). https://doi.org/10.3390/ijms150713077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. R.B. MLadenova, K.I. Aleksieva, I.B. Nacheva, J. Radioanal Nucl. Chem. 320, 569 (2019). https://doi.org/10.1007/s10967-019-06520-x

    Article  CAS  Google Scholar 

  17. M. Ognyanov, P. Denev, D. Teneva, Y. Georgiev, S. Taneva, I. Totseva, M. Kamenova-Nacheva, Y. Nikolova, S. Momchilova, Molecules. 27, 1765 (2022). https://doi.org/10.3390/molecules27061765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. E. Georgieva, Y. Karamalakova, G. Nikolova, B. Grigorov, D. Pavlov, V. Gadjeva, A. Zheleva, Biotechnol. & Biotechnol. Equations 26, 151 (2012). https://doi.org/10.5504/50YRTIMB.2011.0028

    Article  Google Scholar 

  19. M. Bartoszek, J. Polak, Food Chem. 132, 2089 (2012)

    Article  CAS  Google Scholar 

  20. M. Bartoszek, J. Polak, M. Chorążewski, Eur. Food Res. Technol. 244, 595 (2018)

    Article  CAS  Google Scholar 

  21. M. Polovka, M. Suhaj, Food Res. Int. 26, 138 (2010). https://doi.org/10.1080/87559121003590227

    Article  Google Scholar 

  22. D.R. Maloney, B.J. Tabner, V.A. Tabner, Rad Phys. Chem. 39, 309 (1992)

    CAS  Google Scholar 

  23. S.E. Bogushevich, S.V. Matveichuk, J. Appl. Spectrosc. 76, 414 (2009). https://doi.org/10.1007/s10812-009-9178-y

    Article  CAS  Google Scholar 

  24. EN 1787, Foodstuffs - Detection of Irradiated food Containing cellulose – Method by ESR Spectroscopy (European Committee for Standardization, Brussels, Belgium, 2000)

    Google Scholar 

  25. H. Kameya, M. Ukai, Y. Shimoyama, Rad Phys. Chem. 84, 232 (2013). https://doi.org/10.1016/j.radphyschem.2012.05.005

    Article  CAS  Google Scholar 

  26. J. Horvathova, M. Suhaj, M. Polovka, V. Brezova, P. Simko, Czech J. Food Sci. 25, 131 (2007). https://doi.org/10.17221/741-CJFS

    Article  CAS  Google Scholar 

  27. K. Aleksieva, L. Georgieva, E. Tzvetkova, N.D. Yordanov, Rad Phys. Chem. 78, 823 (2009). https://doi.org/10.1016/j.radphyschem.2009.05.013

    Article  CAS  Google Scholar 

  28. K. Nakagawa, B.Epel, J. Oleo Sci. 66 (2017)

  29. P.R. Hussain, S. Chatterjee, P.S. Variyar, A. Sharma, M.A. Dar, A.M. Wani, J. Food Compost Anal. 30, 59 (2013). https://doi.org/10.1016/j.jfca.2013.02.001

    Article  CAS  Google Scholar 

  30. K. Harrison, L.M. Were, Food Chem. 102, 932 (2007). https://doi.org/10.1016/j.foodchem.2006.06.034

    Article  CAS  Google Scholar 

  31. S.A. Marathe, R. Deshpande, A. Khamesra, G. Ibrahim, S.N. Jamdar, Rad Phys. Chem. 125 (2016). https://doi.org/10.1016/j.btre.2017.09.001

Download references

Acknowledgements

R. M. and K. A. thank the Bulgarian National Science Fund - Bulgarian Ministry of Education within the framework of Project “KP-06-N 39/12” for the financial support. Research equipment of distributed research infrastructure INFRAMAT (part of Bulgarian National roadmap for research infrastructures) supported by Bulgarian Ministry of Education and Science was used in this investigation.

Funding

This research was funded by the Bulgarian National Science Fund, grant KP-06-N 39/12 from December 2019.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology, R. Mladenova and K. Aleksieva; Material preparation, Sabina Taneva, and Desislava Teneva; Investigation, and analysis, R. Mladenova, K. Aleksieva, and O. Sabotinov; Writing-original draft preparation, R. Mladenova; Reviewing the manuscript, R. Mladenova, K. Aleksieva, S. Taneva, O. Sabotinov, and D. Teneva. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Ralitsa B. Mladenova.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mladenova, R.B., Aleksieva, K., Taneva, S. et al. EPR characterization of the gamma irradiation effect on antiradical activity and free radicals generation of dried rosehip (Rosa canina L.) seeds. Food Measure 18, 529–537 (2024). https://doi.org/10.1007/s11694-023-02196-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02196-w

Keywords

Navigation