Skip to main content
Log in

Experimental Analyses into Dry Ultrasonic Vibration-Assisted Grinding of Difficult-to-Machine Tool Steel with Alumina Wheel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper describes experimental studies that were carried out to assess the enhancement in grinding productivity of AISI D2 tool steel by adopting the ultrasonic vibration-assisted dry grinding (UVADG) mode. Experimental works were conducted on a UVADG setup that was indigenously developed and manufactured. The grinding productivity in the UVADG mode was assessed by comparing the grinding forces, force ratio, surface roughness, bearing area curve (BAC), BAC ratio, ground surface morphology, and topography achieved in conventional dry grinding (CDG) and conventional wet grinding (CWG) modes. The UVADG mode at optimized amplitude and frequency results in lesser grinding forces and better surface integrity than CDG and CWG modes. With UVADG mode, the impact of overlapping induced by ultrasonic vibration resulted in a higher BAC ratio (88.71%) and a steeper BAC. This BAC ratio reflects the ground surface in UVADG mode, which is less susceptible to antifriction and antiwear characteristics than CDG and CWG modes. The experimental outcomes revealed that the UVADG mode has a greater potential for improving the grindability of AISI D2 tool steel. The current study also promotes the need for a sustainable grinding method for “difficult-to-machine” materials adopting UVADG mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Choudhary, H. Kumar, and S. Singh, Machining Performance and Surface Integrity of AISI D2 Die Steel Machined Using Electrical Discharge Surface Grinding Process, J. Mater. Eng. Perform., 2013, 22(12), p 3665–3673. https://doi.org/10.1007/S11665-013-0679-8/FIGURES/9

    Article  CAS  Google Scholar 

  2. M.A.S. Bin Abdul Rahim, M. Bin Minhat, N.I.S.B. Hussein, and M.S. Bin Salleh, A Comprehensive Review on Cold Work of AISI D2 Tool Steel, Metall. Res. Technol., 2018, 115(1), p 104. https://doi.org/10.1051/METAL/2017048

    Article  Google Scholar 

  3. A. Sharma, M.Z.K. Yusufzai, and M. Vashista, A Comparative Analysis of Grinding of AISI D2 Tool Steel under Different Environments, Mach. Sci. Technol., 2022 https://doi.org/10.1080/10910344.2022.2044853

    Article  Google Scholar 

  4. T. Tawakoli, and B. Azarhoushang, Influence of Ultrasonic Vibrations on Dry Grinding of Soft Steel, Int. J. Mach. Tools Manuf., 2008, 48(14), p 1585–1591.

    Article  Google Scholar 

  5. M.K. Sinha, D. Setti, S. Ghosh, and P. Venkateswara Rao, An Investigation on Surface Burn during Grinding of Inconel 718, J. Manuf. Process., 2016, 21, p 124–133.

    Article  Google Scholar 

  6. H. Mao, Y. Liu, H. Mao, J. Fu, Y. Tang, and X. Li, Study for Characterizing Grinding Burn of 1045 Steel Based on Nonlinear Ultrasonic Coefficients, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/S11665-022-06915-0/FIGURES/19

    Article  Google Scholar 

  7. M.K. Sinha, R. Madarkar, S. Ghosh, and P.V. Rao, Application of Eco-Friendly Nanofluids during Grinding of Inconel 718 through Small Quantity Lubrication, J. Clean. Prod., 2017, 141, p 1359–1375.

    Article  CAS  Google Scholar 

  8. A. Chaudhari, A.S. Awale, and A.K. Chakrabarti, Surface Integrity Characterization of Austenitic, Martensitic and Ferritic Stainless Steel under Different Grinding Process, Mater Res Expres., 2019, 6(11), p 1165c9.

    Article  Google Scholar 

  9. K. Kishore, M.K. Sinha, A. Singh, Archana, M.K. Gupta, and M.E. Korkmaz, A Comprehensive Review on the Grinding Process: Advancements, Applications and Challenges, Proc. Inst. Mech.. Eng. Part C J. Mech. Eng. Sci., 2022, 2022, p 095440622211107. https://doi.org/10.1177/09544062221110782

    Article  Google Scholar 

  10. T. Yu, X. Guo, Z. Wang, P. Xu, and J. Zhao, Effects of the Ultrasonic Vibration Field on Polishing Process of Nickel-Based Alloy Inconel718, J. Mater. Process. Technol., 2019, 273, p 116228.

    Article  CAS  Google Scholar 

  11. D. Bhaduri, S.L. Soo, D.K. Aspinwall, D. Novovic, S. Bohr, P. Harden, and J.A. Webster, Ultrasonic Assisted Creep Feed Grinding of Gamma Titanium Aluminide Using Conventional and Superabrasive Wheels, CIRP Ann., 2017, 66(1), p 341–344.

    Article  Google Scholar 

  12. A. Chaudhari, A. Sharma, A.S. Awale, M.Z.K. Yusufzai, and M. Vashista, Effect of Ultrasonic Vibration Assisted Dry Grinding on Hysteresis Loop Characteristics of AISI D2 Tool Steel, Sadhana Acad. Proc. Eng. Sci., 2021, 46(4), p 1–12. https://doi.org/10.1007/S12046-021-01771-5/FIGURES/12

    Article  Google Scholar 

  13. H. Wang, Y. Hu, W. Cong, Z. Hu, and Y. Wang, A Novel Investigation on Horizontal and 3D Elliptical Ultrasonic Vibrations in Rotary Ultrasonic Surface Machining of Carbon Fiber Reinforced Plastic Composites, J. Manuf. Process., 2020, 52, p 12–25.

    Article  Google Scholar 

  14. Z. Yang, L. Zhu, B. Lin, G. Zhang, C. Ni, and T. Sui, The Grinding Force Modeling and Experimental Study of ZrO2 Ceramic Materials in Ultrasonic Vibration Assisted Grinding, Ceram. Int., 2019, 45(7), p 8873–8889.

    Article  CAS  Google Scholar 

  15. P.V. Badiger, V. Desai, M.R. Ramesh, B.K. Prajwala, and K. Raveendra, Effect of Cutting Parameters on Tool Wear, Cutting Force and Surface Roughness in Machining of MDN431 Alloy Using Al and Fe Coated Tools, Mater. Res. Express, 2019, 6(1), p 016401.

    Article  Google Scholar 

  16. P.V. Badiger, V. Desai, M.R. Ramesh, B.K. Prajwala, and K. Raveendra, Cutting Forces, Surface Roughness and Tool Wear Quality Assessment Using ANN and PSO Approach During Machining of MDN431 with TiN/AlN-Coated Cutting Tool, Arab. J. Sci. Eng., 2019, 44(9), p 7465.

    Article  CAS  Google Scholar 

  17. P.V. Badiger, V. Desai, M.R. Ramesh, S. Joladarashi, and H. Gourkar, Tribological Behaviour of Monolayer and Multilayer Ti-Based Thin Solid Films Deposited on Alloy Steel, Mater. Res. Express, 2019, 6(2), p 026419.

    Article  Google Scholar 

  18. P.V. Badiger, V. Desai, and M.R. Ramesh, Development and Characterization of Ti/TiC/TiN Coatings by Cathodic Arc Evaporation Technique, Trans. Indian Inst. Met., 2017, 70(9), p 2459.

    Article  CAS  Google Scholar 

  19. L. Zheng, W. Chen, and D. Huo, Review of Vibration Devices for Vibration-Assisted Machining, Int. J. Adv. Manuf. Technol., 2020, 108(5–6), p 1631–1651. https://doi.org/10.1007/S00170-020-05483-8/FIGURES/12

    Article  Google Scholar 

  20. M. Dogra, V.S. Sharma, J.S. Dureja, and S.S. Gill, Environment-Friendly Technological Advancements to Enhance the Sustainability in Surface Grinding- A Review, J. Clean. Prod., 2018, 197, p 218–231.

    Article  Google Scholar 

  21. B. Azarhoushang, and T. Tawakoli, Development of a Novel Ultrasonic Unit for Grinding of Ceramic Matrix Composites, Int. J. Adv. Manuf. Technol., 2011, 57(9–12), p 945–955.

    Article  Google Scholar 

  22. H. Chen, and J. Tang, Influence of Ultrasonic Assisted Grinding on Abbott-Firestone Curve, Int. J. Adv. Manuf. Technol., 2016, 86(9–12), p 2753–2757.

    Article  Google Scholar 

  23. H. Chen, J. Tang, W. Shao, and B. Zhao, An Investigation on Surface Functional Parameters in Ultrasonic-Assisted Grinding of Soft Steel, Int. J. Adv. Manuf. Technol., 2018, 97(5–8), p 2697–2702.

    Article  Google Scholar 

  24. A. Abdullah, M. Sotoodezadeh, R. Abedini, and V. Fartashvand, Experimental Study on Ultrasonic Use in Dry Creep-Feed up-Grinding of Aluminum 7075 and Steel X210Cr12, Int. J. Precis. Eng. Manuf., 2013, 14(2), p 191–198.

    Article  Google Scholar 

  25. H. Chen, J. Tang, W. Shao, and B. Zhao, An Investigation on Surface Functional Parameters in Ultrasonic-Assisted Grinding of Soft Steel, Int. J. Adv. Manuf. Technol., 2018, 97(5), p 2697–2702. https://doi.org/10.1007/S00170-018-2164-X

    Article  Google Scholar 

  26. H.C. Mult, G. Spur, and S.E. Holl, Ultrasonic Assisted Grinding of Ceramics, J. Mater. Process. Technol., 1996, 62(4), p 287–293.

    Article  Google Scholar 

  27. D. Li, J. Tang, H. Chen, and W. Shao, Study on Grinding Force Model in Ultrasonic Vibration-Assisted Grinding of Alloy Structural Steel, Int. J. Adv. Manuf. Technol., 2019, 101(5–8), p 1467–1479.

    Article  Google Scholar 

  28. X. Zhang, R. Huang, K. Liu, A.S. Kumar, and H. Deng, Suppression of Diamond Tool Wear in Machining of Tungsten Carbide by Combining Ultrasonic Vibration and Electrochemical Processing, Ceram. Int., 2018, 44(4), p 4142–4153.

    Article  CAS  Google Scholar 

  29. W.X. Xu, and L.C. Zhang, Ultrasonic Vibration-Assisted Machining: Principle, Design and Application, Adv. Manuf., 2015, 3(3), p 173–192.

    Article  Google Scholar 

  30. K. Ding, Y. Fu, H. Su, H. Xu, F. Cui, and Q. Li, Experimental Studies on Matching Performance of Grinding and Vibration Parameters in Ultrasonic Assisted Grinding of SiC Ceramics, Int. J. Adv. Manuf. Technol., 2017, 88(9–12), p 2527–2535.

    Article  Google Scholar 

  31. A. Awale, A.K. Shrivastava, A. Chaudhari, M. Vashista, and M.Z.K. Yusufzai, Micro-Magnetic Characterisation of Ground AISI D2 Tool Steel Using Hysteresis Loop Technique, Int. J. Mater. Prod. Technol., 2021, 62(1–3), p 180–198.

    Article  CAS  Google Scholar 

  32. K. Ding, Y. Fu, H. Su, X. Gong, and K. Wu, Wear of Diamond Grinding Wheel in Ultrasonic Vibration-Assisted Grinding of Silicon Carbide, Int. J. Adv. Manuf. Technol., 2014, 71(9), p 1929–1938. https://doi.org/10.1007/S00170-014-5625-X

    Article  Google Scholar 

  33. A.S. Awale, A. Srivastava, M. Vashista, and M.Z. Khan Yusufzai, Influence of Minimum Quantity Lubrication on Surface Integrity of Ground Hardened H13 Hot Die Steel, Int. J. Adv. Manuf. Technol., 2018, 100(1), p 983–997. https://doi.org/10.1007/S00170-018-2777-0

    Article  Google Scholar 

  34. M.K. Sinha, “Experimental Investigations in Grinding of Inconel 718 Using Different Environments and Modelling of Specific Grinding Energy. Doctoral Dissertation IIT Delhi, 2018. ,” (New Delhi), Indian Institute of Technology Delhi, 2018, http://www.eprint.iitd.ac.in/handle/2074/7536. Accessed 8 August 2022.

  35. I.D. Marinescu, W. Brian Rowe, B. Dimitrov, and H. Ohmori, Tribosystems of Abrasive Machining Processes, Tribology of Abrasive Machining Processes. Elsevier, 2013

    Google Scholar 

  36. S. Das, and C. Pandivelan, Grinding Characteristics during Ultrasonic Vibration Assisted Grinding of Alumina Ceramic in Selected Dry and MQL Conditions, Mater. Res. Express, 2020, 7, p 85404. https://doi.org/10.1088/2053-1591/abad14

    Article  CAS  Google Scholar 

  37. A. Sharma, A. Chaudhari, A.S. Awale, M.Z.K. Yusufzai, and M. Vashista, Effect of Grinding Environments on Magnetic Response of AISI D2 Tool Steel, Russ. J. Nondestruct. Test., 2021, 57(3), p 212–221.

    Article  Google Scholar 

  38. A.S. Awale, A. Chaudhari, A. Kumar, M.Z. Khan Yusufzai, and M. Vashista, Synergistic Impact of Eco-Friendly Nano-Lubricants on the Grindability of AISI H13 Tool Steel: A Study towards Clean Manufacturing, J. Clean. Prod., 2022, 364, p 132686.

    Article  CAS  Google Scholar 

  39. S. Lou, Z. Zhu, W. Zeng, C. Majewski, P.J. Scott, and X. Jiang, Material Ratio Curve of 3D Surface Topography of Additively Manufactured Parts: An Attempt to Characterise Open Surface Pores, Surf. Topogr. Metrol. Prop., 2021, 9(1), p 015029. https://doi.org/10.1088/2051-672X/ABEDF9

    Article  Google Scholar 

  40. P. He, S. Lu, Y. Wang, R. Li, and F. Li, Analysis of the Best Roughness Surface Based on the Bearing Area Curve Theory, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2021, 236(3), p 527–540. https://doi.org/10.1177/13506501211018937

    Article  CAS  Google Scholar 

  41. M. Jamshidinia, and R. Kovacevic, The Influence of Heat Accumulation on the Surface Roughness in Powder-Bed Additive Manufacturing, Surf. Topogr. Metrol. Prop., 2015, 3(1), p 014003. https://doi.org/10.1088/2051-672X/3/1/014003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the funding support received from IIT (BHU) under sprouting Grant (Letter No. IIT (BHU)/Dec/2013-14/5110/L) and Institute Research Project (IIT(BHU)/R & D)/IRP/2015-16/2832).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghanshu Vashista.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 4549 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, A., Sharma, A., Yusufzai, M.Z.K. et al. Experimental Analyses into Dry Ultrasonic Vibration-Assisted Grinding of Difficult-to-Machine Tool Steel with Alumina Wheel. J. of Materi Eng and Perform 32, 4860–4870 (2023). https://doi.org/10.1007/s11665-022-07444-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07444-6

Keywords

Navigation