Skip to main content
Log in

Developments and Process Improvements Leading to High-Quality and Large-Area HgCdTe LPE Detectors

  • Topical Collection: 2022 U.S. Workshop on Physics and Chemistry of II-VI Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Liquid-phase epitaxy (LPE) is a material growth technology used in the fabrication of mercury cadmium telluride (HgCdTe) infrared (IR) detectors, which is the highest-performing solution in the IR community. This paper presents the most successful LPE technology, “infinite-melt” vertical liquid-phase epitaxy (VLPE) from Hg-rich solutions. To fulfill requirements for large-format infrared focal-plane detectors, solutions were required to improve the uniformity, yield, and material properties of HgCdTe liquid-phase epitaxial (LPE) and cadmium zinc telluride (CdZnTe or CZT) bulk growth as well as substrate fabrication processing. Raytheon Vision Systems (RVS) produces CdZnTe substrates for epitaxial growth, and in this work, advancements in boule growth processes and metrology led to the identification and elimination of the infrared opaque extended defects within CdZnTe material. Boule growth advancements have also decreased the Cd precipitate defect diameter by a factor of 4. These improvements enabled large-format focal-plane arrays (FPAs) with uniform sensor response. Also, improvement in our polishing process has reduced substrate processing time and total thickness variation (TTV), improving downstream lithography and hybridization processes. Optimizing LPE growth chemistry dynamics resulted in the elimination of large defects, decreased density of epitaxial defects, and improved control of cut-on and thickness of resulting layers. Implementation of custom software allowed real-time prediction during layer growth which resulted in a higher process yield. The continuous improvement of VLPE results in better uniformity, reduced noise, and competitive die size, compared to other long-wave (LW) second-generation detector processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.F. Vilela, S.F. Harris, R.E. Kvaas, A.A. Buell, M.D. Newton, K.R. Olsson, D.D. Lofgreen, and S.M. Johnson, Flexibility of pn junction formation from SWIR to LWIR using MBE-grown Hg (1–x) Cd x Te on Si substrates. J. Electron. Mater. 38(8), 1755 (2009).

    Article  CAS  Google Scholar 

  2. M.F. Vilela, A.A. Buell, M.D. Newton, G.M. Venzor, A.C. Childs, J.M. Peterson, J.J. Franklin, R.E. Bornfreund, W.A. Radford, and S.M. Johnson, Control and growth of middle wave infrared (MWIR) Hg (1–x) CdxTe on Si by molecular beam epitaxy. J. Electron. Mater. 34, 898 (2005).

    Article  CAS  Google Scholar 

  3. M. Reddy, J.M. Peterson, F. Torres, B.T. Fennel, X. Jin, K. Doyle, T. Vang, N. Juanko, S.M. Johnson, and A. Hampp, Multi-wafer growth simultaneously on four 6 x 6 cm CdZnTe substrates for step increase in MBE HgCdTe wafer production. J. Electron. Mater. 51, 4758 (2022).

    Article  CAS  Google Scholar 

  4. M.F. Vilela, G.K. Pribil, K.R. Olsson, and D.D. Lofgreen, HgCdTe molecular beam epitaxy growth temperature calibration using spectroscopic ellipsometry. J. Electron. Mater 41, 2937 (2012).

    Article  CAS  Google Scholar 

  5. C.C. Wang, S.H. Shin, M. Chu, M. Lanir, and A.H.B. Vanderwyck, Liquid phase growth of HgCdTe epitaxial layers. J. Electrochem. Soc. 127, 175 (1980).

    Article  CAS  Google Scholar 

  6. D.D. Edwall, E.R. Gertner, and W.E. Tennant, Liquid phase epitaxial growth of large area Hg1−xCdxTe epitaxial layers. J. Appl. Phys. 55, 1453 (1984).

    Article  CAS  Google Scholar 

  7. J.E. Bowers, J.L. Schmit, C.J. Speerschneider, and R.B. Maciolek, Comparison of Hg06Cd04Te LPE layer growth from Te-, Hg-, and HgTe-rich solutions. IEEE Trans. Electron Devices 27, 24 (1980).

    Article  Google Scholar 

  8. Y. Nemirovosky, S. Margalit, E. Finkman, Y. Shacham-Diamand, and I. Kidron, Growth and properties of Hg1-xCdxTe epitaxial layers. J. Electron. Mater 11, 133 (1982).

    Article  Google Scholar 

  9. J.C. Tranchart, B. Latorre, C. Foucher, and Y. Le Gouge, LPE growth of Hg1- xCdxTe on Cd1- yZnyTe substrates. J. Crystal Growth 72, 468 (1985).

    Article  CAS  Google Scholar 

  10. J.K. Radhakrishnan, S. Sitharaman, and S.C. Gupta, Liquid phase epitaxial growth of HgCdTe using a modified horizontal slider. J. Cryst. Growth 252, 79 (2003).

    Article  CAS  Google Scholar 

  11. S. Bernardi, New developments in the liquid-phase epitaxy of Hgl- xCdxTe. Mater. Sci. Eng. B 28, 21 (1994).

    Article  CAS  Google Scholar 

  12. T. Tung, Infinite-melt vertical liquid-phase epitaxy of HgCdTe from Hg solution: status and prospects. J. Cryst. Growth 86, 161 (1988).

    Article  CAS  Google Scholar 

  13. T. Tung, L.V. DeArmond, R.F. Herald, P.E. Herning, M.H. Kalisher, D.A. Olson, R.F. Risser, A. Stevens, and S.J. Tighe, State of the art of Hg-melt LPE HgCdTe at Santa Barbara research center. Infrared Detect State Art 1735, 109 (1992).

    Article  CAS  Google Scholar 

  14. M.H. Kalisher, P.E. Herning, and T. Tung, Hg-rich liquid-phase epitaxy of Hg1-xCdxTe. Prog. Cryst. Growth Charact. 29, 41 (1994).

    Article  CAS  Google Scholar 

  15. M.F. Vilela, J. Hogan, B.T. Fennell, G.M. Venzor, P.M. Goetz, D.L. Baley, G. Paloczi, and A. Hampp, Infinite-melt vertical liquid-phase epitaxy of HgCdTe from hg solution: from VLWIR to SWIR. J. Electron. Mater. 51, 4731 (2022). https://doi.org/10.1007/s11664-022-09810-5.

    Article  CAS  Google Scholar 

  16. S. Sen, C.S. Liang, D.R. Rhiger, J.E. Stannard, and H.F. Arlinghaus, Reduction of CdZnTe substrate defects and relation to epitaxial HgCdTe quality. J. Electron. Mater. 25(8), 1188 (1996).

    Article  CAS  Google Scholar 

  17. P. Capper and J. Garland, Mercury cadmium telluride growth properties and applications (Wiley, 2011), p.44.

    Google Scholar 

  18. M.F. Vilela, D.D. Lofgreen, E.P.G. Smith, M.D. Newton, G.M. Venzor, J.M. Peterson, J.J. Franklin, M. Reddy, Y. Thai, E.A. Patten, S.M. Johnson, and M.Z. Tidrow, LWIR HgCdTe detectors grown on Ge substrates. J. Electron. Mater. 37, 1465 (2008). https://doi.org/10.1007/s11664-008-0443-2.

    Article  CAS  Google Scholar 

  19. J.D. Benson, L.O. Bubulac, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, L.A. Almeida, A. Stoltz, J.M. Arias, G. Brill, Y. Chen, P.S. Wijewarnasuriya, S. Farrell, and U. Lee, Growth and analysis of HgCdTe on alternate substrates. J. Electron. Mater. 41, 2971 (2012).

    Article  CAS  Google Scholar 

  20. Z. Tsybrii, Y. Bezsmolnyy, K. Svezhentsova, M. Vuichyk, I. Lysiuk, M. Apatska, M. Smolii, N. Dmytruk, S. Bunchuk, K. Andreeva, and F. Sizov, HgCdTe/CdZnTe LPE epitaxial layers: from material growth to applications in devices. J. Cryst. Growth 529, 125295 (2020).

    Article  CAS  Google Scholar 

  21. D.Z. Ting, A. Khoshakhlagh, A. Soibel, and S.D. Gunapala, Long wavelength InAs/InAsSb infrared superlattice challenges: a theoretical investigation. J. Electron. Mater. 49, 6936 (2020). https://doi.org/10.1007/s11664-020-08349-7.

    Article  CAS  Google Scholar 

  22. A. Weber, W. Belzner, L.-D. Haas, S. Hanna, K. Hofmann, A. Neef, M. Reder, P. Stifter, J. Wendler, J. Ziegler, and H.-P. Nothaft, Radiation hardness of two-dimensional focal plane detector arrays for LWIR/VLWIR space sounding missions. 12th European Conference on Radiation and Its Effects on Components and Systems (2011), p. 336

  23. G.D. Jenkins, C.P. Morath, and V.M. Cowan, Empirical study of the disparity in radiation tolerance of the minority-carrier lifetime between II–VI and III–V MWIR detector technologies for space applications. J. Electron. Mater. 46, 5405 (2017).

    Article  CAS  Google Scholar 

  24. X. Sun, J. B. Abshire, J.-M. Laurnstein, W. Sullivan III, J. Beck, and J. E. Hubbs, Evaluation of space radiation effects on HgCdTe avalanche photodiode arrays for Lidar applications. Proceedings in SPIE 10624, Infrared Technology and Applications XLIV, 106240G, 31 May 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro F. Vilela.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilela, M.F., Hogan, J., Jones, K. et al. Developments and Process Improvements Leading to High-Quality and Large-Area HgCdTe LPE Detectors. J. Electron. Mater. 52, 7046–7053 (2023). https://doi.org/10.1007/s11664-023-10543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10543-2

Keywords

Navigation