Skip to main content
Log in

Effects of Various Parameters on Structural and Optical Properties of CBD-Grown ZnS Thin Films: A Review

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc sulfide (ZnS) thin films deposited by chemical bath deposition (CBD) technique have proved their capability in a wide area of applications including electroluminescent and display devices, solar cells, sensors, and field emitters. These semiconducting thin films have attracted a much attention from the scientific community for industrial and research purposes. In this article, we provide a comprehensive review on the effect of various parameters on various properties of CBD-grown ZnS films. In the first part, we discuss the historical background of ZnS, its basic properties, and the advantages of the CBD technique. Detailed discussions on the film growth, structural and optical properties of ZnS thin films affected by various parameters, such as bath temperature and concentration, deposition time, stirring speed, complexing agents, pH value, humidity in the environment, and annealing conditions, are also presented. In later sections, brief information about the recent studies and findings is also added to explore the scope of research work in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Cha, S.M. Kwon, J.A. Bae, S.H. Yang, and C.W. Jeon, J. Alloys Compd. 708, 562 (2017).

    Article  Google Scholar 

  2. K. Kim and W.N. Shafarman, Nano Energy 30, 488 (2016).

    Article  Google Scholar 

  3. X.S. Fang, Y. Bando, G.Z. Shen, C.H. Ye, U.K. Gautam, P.M.F.J. Costa, C.Y. Zhi, C.C. Tang, and D. Golberg, Adv. Mater. 19, 2593 (2007).

    Article  Google Scholar 

  4. E.N. Harvey, A History of Luminescence From the Earliest Times Until 1900 (Philadelphia: American Philosophical Society, 1957).

    Book  Google Scholar 

  5. A. Khare, S. Mishra, D.S. Kshatri, and S. Tiwari, J. Electron. Mater. 46, 687 (2017).

    Article  Google Scholar 

  6. T. Sidot, Comptes Rend. Acad. Sci. 62, 999 (1866).

    Google Scholar 

  7. G. Destriau, J. Chim. Phys. 33, 587 (1936).

    Article  Google Scholar 

  8. A. Mukherjee and S. Ghosh, Phys. E Low-Dimens. Syst. Nanostruct. 64, 234 (2014).

    Article  Google Scholar 

  9. S. Khan, L.S.A. Carneiro, E.C. Romani, D.G. Larrudé, and R.Q. Aucelio, J. Lumin. 156, 16 (2014).

    Article  Google Scholar 

  10. C. Shu, L. Ding, and W. Zhong, Spectrochim Acta. Part A Mol. Biomol. Spectrosc. 131, 195 (2014).

    Article  Google Scholar 

  11. F. Chen, Y. Cao, and D. Jia, Chem. Eng. J. 234, 223 (2013).

    Article  Google Scholar 

  12. L. Zhang, R. Dong, Z. Zhu, and S. Wang, Sens. Actuator B Chem 245, 112 (2017).

    Article  Google Scholar 

  13. X. Dong, J. Xu, S. Shi, X. Zhang, L. Li, and S. Yin, J. Phys. Chem. Solids 104, 133 (2017).

    Article  Google Scholar 

  14. Z. Gang, Z. Pei, N. Tongjun, L. Lin, D. Jiatao, J. Yong, J. Zhifeng, and S. Xiaosong, Mater. Lett. 189, 263 (2017).

    Article  Google Scholar 

  15. S. Park, S. An, Y. Mun, and C. Lee, Curr. Appl. Phys. 14, 57 (2014).

    Article  Google Scholar 

  16. S.K. Maji, A.K. Dutta, D.N. Srivastava, P. Paul, A. Mondal, and B. Adhikary, Polyhedron 30, 2493 (2011).

    Article  Google Scholar 

  17. Y. Lun, Y. Lin, Y. Meng, and Y. Wang, Ceram. Int. 40, 8157 (2014).

    Article  Google Scholar 

  18. C. Liu, L. Mu, J. Jia, X. Zhou, and Y. Lin, Electrochim. Acta 111, 179 (2013).

    Article  Google Scholar 

  19. X. Ma, J. Song, and Z. Yu, Thin Solid Films 519, 5043 (2011).

    Article  Google Scholar 

  20. T. Kryshtab, V.S. Khomchenko, J.A. Andraca-Adame, A.K. Savin, A. Kryvko, G. Juárez, and R. Peña-Sierra, J. Lumin. 129, 1677 (2009).

    Article  Google Scholar 

  21. S.K. Mehta, Khushboo, and A. Umar, Talanta 85, 2411 (2011).

    Article  Google Scholar 

  22. L. Wang, S. Huang, and Y. Sun, Appl. Surf. Sci. 270, 178 (2013).

    Article  Google Scholar 

  23. S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain, and H. Manuspiya, Solid State Sci. 14, 299 (2012).

    Article  Google Scholar 

  24. H. Labiadh, B. Sellami, A. Khazri, W. Saidani, and S. Khemais, Opt. Mater. 64, 179 (2017).

    Article  Google Scholar 

  25. X. Fang, Y. Bando, U.K. Gautam, C. Ye, and D. Golberg, J. Mater. Chem. 18, 509 (2008).

    Article  Google Scholar 

  26. T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, Nanoscale 2, 168 (2010).

    Article  Google Scholar 

  27. X. Fang, Y. Bando, U.K. Gautam, T. Zhai, H. Zeng, X. Xu, M. Liao, and D. Golberg, Crit. Rev. Solid State Mater. Sci. 34, 190 (2009).

    Article  Google Scholar 

  28. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, and D. Golberg, Prog. Mater Sci. 56, 175 (2011).

    Article  Google Scholar 

  29. R. Kamada, T. Yagioka, S. Adachi, A. Handa, K.F. Tai, T. Kato, and H. Sugimoto, in 43rd IEEE Photovoltaic Specialists Conference, pp. 1287–1291 (2016).

  30. R. Bhattacharya and K. Ramanathan, Sol. Energy 77, 679 (2004).

    Article  Google Scholar 

  31. J.Y. Park, R.B.V. Chalapathy, A.C. Lokhande, C.W. Hong, and J.H. Kim, J. Alloys Compd. 695, 2652 (2017).

    Article  Google Scholar 

  32. C.P. Bjorkman, T. Torndahl, D. Abou-Ras, J. Malmstrom, J. Kessler, and L. Stolt, J. Appl. Phys. 100, 044506 (2006).

    Article  Google Scholar 

  33. T. Nakada, M. Mizutani, Y. Hagiwara, and A. Kunioka, Sol. Energy Mater. Sol. Cells 67, 255 (2001).

    Article  Google Scholar 

  34. M. Zuo, S. Tan, G.P. Li, and S.Y. Zhang, Sci. China Phys. Mech. Astron. 55, 219 (2012).

    Article  Google Scholar 

  35. J.J. Ho, W.T. Hsu, C.C. Chiang, S.Y. Tsai, S.S. Wang, C.K. Lin, C.C. Chou, C.H. Yeh, and K.L. Wang, Mater. Sci. Semicond. Process. 59, 29 (2017).

    Article  Google Scholar 

  36. A. Khare, J. Optoelectron. Adv. Mater. 11, 1805 (2009).

    Google Scholar 

  37. X.J. Zhang, M.W. Zhao, S.S. Yan, T. He, W.F. Li, X.H. Lin, Z.X. Xi, Z.H. Wang, X.D. Liu, and Y.Y. Xia, Nanotechnology 19, 305708 (2008).

    Article  Google Scholar 

  38. C.Y. Yeh, Z.W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B 46, 10086 (1992).

    Article  Google Scholar 

  39. T.K. Tran, W. Park, W. Tong, M.M. Kyi, B.K. Wagner, and C.J. Summers, J. Appl. Phys. 81, 2803 (1997).

    Article  Google Scholar 

  40. H. Chen, D. Shi, J. Qi, J. Jia, and B. Wang, Phys. Lett. A 373, 371 (2009).

    Article  Google Scholar 

  41. F. Ghribi, L.E. Mir, K. Omri, and K. Djessas, Optik 127, 3688 (2016).

    Article  Google Scholar 

  42. T.K. Pathak, V. Kumar, L.P. Purohit, H.C. Swart, and R.E. Kroon, Physica E 84, 530 (2016).

    Article  Google Scholar 

  43. K. Ghezali, L. Mentar, B.R. Boudine, and A. Azizi, J. Electroanal. Chem. 794, 212 (2017).

    Article  Google Scholar 

  44. K.L. Chopra, R.C. Kainthla, D.K. Pandya, and A.P. Thakur, Phys. Thin Films 12, 201 (1982).

    Google Scholar 

  45. C.D. Lokhande, Mater. Chem. Phys. 28, 145 (1991).

    Article  Google Scholar 

  46. R.S. Mane and C.D. Lokhande, Mater. Chem. Phys. 65, 1 (2000).

    Article  Google Scholar 

  47. P.K. Nair, M.T.S. Nair, A. Femandez, and M. Ocampo, J. Phys. D Appl. Phys. 22, 829 (1989).

    Article  Google Scholar 

  48. B.M. Basol and V.K. Kapur, IEEE Trans. Electron Dev. 37, 418 (1990).

    Article  Google Scholar 

  49. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt. Res. Appl. 19, 894 (2011).

    Article  Google Scholar 

  50. P. O’Brien and J. McAleese, J. Mater. Chem. 8, 2309 (1998).

    Article  Google Scholar 

  51. J.M. Doña and J. Herrero, J. Electrochem. Soc. 144, 4081 (1997).

    Article  Google Scholar 

  52. P.K. Nair, P. Parmananda, and M.T.S. Nair, J. Cryst. Growth 206, 68 (1999).

    Article  Google Scholar 

  53. M. Kostoglou, N. Andritsos, and A.J. Karabelas, Thin Solid Films 387, 115 (2001).

    Article  Google Scholar 

  54. L. Zhou, N. Tang, and S. Wu, Surf. Coat. Technol. 228, S146 (2013).

    Article  Google Scholar 

  55. H. Ke, S. Duo, T. Liu, Q. Sun, C. Ruan, X. Fei, J. Tan, and S. Zhan, Mater. Sci. Semicond. Process. 18, 28 (2014).

    Article  Google Scholar 

  56. B.Z. Dong, G.J. Fang, J.F. Wang, W.J. Guan, and X.Z. Zhao, J. Appl. Phys. 101, 033713 (2007).

    Article  Google Scholar 

  57. G. Liang, P. Fan, C. Chen, J. Luo, J. Zhao, and D. Zhang, J. Mater. Sci. Mater. Electron. 26, 2230 (2015).

    Article  Google Scholar 

  58. J.M. Dona and J. Herrero, J. Electrochem. Soc. 141, 205 (1994).

    Article  Google Scholar 

  59. C. Hubert, N. Naghavi, O. Roussel, A. Etcheberry, D. Hariskos, R. Menner, M. Powalla, O. Kerrec, and D. Lincot, Prog. Photovolt. Res. Appl. 17, 470 (2009).

    Article  Google Scholar 

  60. Y. Zhang, X.Y. Dang, J. Jin, T. Yu, B.Z. Li, Q. He, F.Y. Li, and Y. Sun, Appl. Surf. Sci. 256, 6871 (2010).

    Article  Google Scholar 

  61. F. Gode, C. Gumus, and M. Zor, J. Cryst. Growth 299, 136 (2007).

    Article  Google Scholar 

  62. S.W. Shin, G.L. Agawane, M.G. Gang, A.V. Moholkar, J. Moon, J.H. Kim, and J.Y. Lee, J. Alloys Compd. 526, 25 (2012).

    Article  Google Scholar 

  63. G.L. Agawane, S.W. Shin, A.V. Moholkar, K.V. Gurav, J.H. Yun, J.Y. Lee, and J.H. Kim, J. Alloys Compd. 535, 53 (2012).

    Article  Google Scholar 

  64. K. Deepa, K.C. Preetha, K.V. Murali, A.C. Dhanya, A.J. Ragina, and T.L. Remadevi, Optik 125, 5727 (2014).

    Article  Google Scholar 

  65. P.U. Londhe, A.B. Rohom, G.R. Bhand, S. Jadhav, M.G. Lakhe, and N.B. Chaure, J. Mater. Sci.: Mater. Electron. 28, 5207 (2017).

    Google Scholar 

  66. T.B. Nasr, N. Kamoun, M. Kanzari, and R. Bennaceur, Thin Solid Films 500, 4 (2006).

    Article  Google Scholar 

  67. P.A. Luque, A. Castro-Beltran, A.R. Vilchis-Nestr, M.A. Quevedo-Lopez, and A. Olivas, Mater. Lett. 140, 148 (2015).

    Article  Google Scholar 

  68. H. Lekiket and M.S. Aida, Mater. Sci. Semicond. Process. 16, 1753 (2013).

    Article  Google Scholar 

  69. K. Ahn, J.H. Jeon, S.Y. Jeong, J.M. Kim, H.S. Ahn, J.P. Kim, E.D. Jeong, and C.R. Cho, Curr. Appl. Phys. 12, 1465 (2012).

    Article  Google Scholar 

  70. Z.Q. Li, J.H. Shi, Q.Q. Liu, Z.A. Wang, Z. Sun, and S.M. Huang, Appl. Surf. Sci. 257, 122 (2010).

    Article  Google Scholar 

  71. Y.C. Lin, Y.T. Chao, and P.C. Yao, Appl. Surf. Sci. 307, 724 (2014).

    Article  Google Scholar 

  72. P. Roy, J.R. Ota, and S.K. Srivastava, Thin Solid Films 515, 1912 (2006).

    Article  Google Scholar 

  73. Q. Liu, M. Guobing, and A. Jianping, Appl. Surf. Sci. 254, 5711 (2008).

    Article  Google Scholar 

  74. Y. Kavanagh and D.C. Cameron, Thin Solid Films 398, 24 (2001).

    Article  Google Scholar 

  75. Y.T. Nien, S.C. Tsai, and I.G. Chen, J. Cryst. Growth 287, 128 (2006).

    Article  Google Scholar 

  76. S.W. Shin, S.R. Kang, J.H. Yun, A.V. Moholkar, J. Moon, J.Y. Lee, and J.H. Kim, Sol. Energy Mater. Sol. Cells 95, 856 (2011).

    Article  Google Scholar 

  77. M. Cao, B.L. Zhang, L. Li, J. Huang, S.R. Zhao, H. Cao, J.C. Jiang, Y. Sun, and Y. Shen, Mater. Res. Bull. 48, 357 (2013).

    Article  Google Scholar 

  78. S. Tec-Yam, J. Rojas, V. Rejón, and A.I. Oliva, Mater. Chem. Phys. 136, 386 (2012).

    Article  Google Scholar 

  79. P.A. Luque, M.A. Quevedo-Lopez, and A. Olivas, Mater. Lett. 106, 49 (2013).

    Article  Google Scholar 

  80. F.G. Hone, F.K. Ampong, T. Abza, I. Nkrumah, M. Paal, R.K. Nkum, and F. Boakye, Mater. Lett. 155, 58 (2015).

    Article  Google Scholar 

  81. H. Haddad, A. Chelouche, D. Talantikite, H. Merzouk, F. Boudjouan, and D. Djouadi, Thin Solid Films 589, 451 (2015).

    Article  Google Scholar 

  82. Y.G. Wang, S.P. Lau, X.H. Zhang, H.H. Hng, H.W. Lee, S.F. Yu, and B.K. Tay, J. Cryst. Growth 259, 335 (2003).

    Article  Google Scholar 

  83. X. Zhang, H. Song, L. Yu, T. Wang, X. Ren, X. Kong, Y. Xie, and X. Wang, J. Lumin. 118, 251 (2006).

    Article  Google Scholar 

  84. T. Liu, H. Ke, H. Zhang, S. Duo, Q. Sun, X. Fei, G. Zhou, H. Liu, and L. Fan, Mater. Sci. Semicond. Process. 26, 301 (2014).

    Article  Google Scholar 

  85. T. Liu, Y. Li, H. Ke, Y. Qian, S. Duo, Y. Hong, and X. Sun, J. Mater. Sci. Technol. 32, 207 (2016).

    Article  Google Scholar 

  86. T. Kobayashi, T. Kumazawa, Z.J.L. Kao, and T. Nakada, Sol. Energy Mater. Sol. Cells 123, 197 (2014).

    Article  Google Scholar 

  87. A.T. Salih, A.A. Najim, M.A.H. Muhi, and K.R. Gbashi, Opt. Commun. 388, 84 (2017).

    Article  Google Scholar 

  88. R. Sahraei and S. Darafarin, J. Lumin. 149, 170 (2014).

    Article  Google Scholar 

  89. A. Jrad, T.B. Nasr, and N. Turki-Kamoun, Opt. Mater. 50, 128 (2015).

    Article  Google Scholar 

  90. S. Darafarin, R. Sahraei, and A. Daneshfar, J. Alloys Compd. 658, 780 (2016).

    Article  Google Scholar 

  91. P. Babu, M.R.V. Reddy, S. Kondaiah, K.T.R. Reddy, and P. Chinho, Optik 130, 608 (2017).

    Article  Google Scholar 

  92. T.B. Nasr, N. Kamoun, and C. Guasch, Appl. Surf. Sci. 254, 5039 (2008).

    Article  Google Scholar 

  93. A. Wei, J. Liu, M. Zhuang, and Y. Zhao, Mater. Sci. Semicond. Process. 16, 1478 (2013).

    Article  Google Scholar 

  94. M.H. Doha, M.J. Alam, J. Rabeya, K.A.M.H. Siddiquee, S. Hussain, O. Islam, M.A. Gafur, S. Islam, N. Khatun, and S.H. Sarkar, Optik 126, 5194 (2015).

    Article  Google Scholar 

  95. S.W. Shin, S.R. Kang, K.V. Gurav, J.H. Yun, J. Moon, J.Y. Lee, and J.H. Kim, Sol. Energy 85, 2903 (2011).

    Article  Google Scholar 

  96. C.A. Rodríguez, M.G. Sandoval-Paz, G. Cabello, M. Flores, H. Fernández, and C. Carrasco, Mater. Res. Bull. 60, 313 (2014).

    Article  Google Scholar 

  97. F. Long, W.M. Wanga, Z. Cui, L. Fan, Z. Zou, and T. Jia, Chem. Phys. Lett. 462, 84 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayush Khare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, T., Lilhare, D. & Khare, A. Effects of Various Parameters on Structural and Optical Properties of CBD-Grown ZnS Thin Films: A Review. J. Electron. Mater. 47, 1730–1751 (2018). https://doi.org/10.1007/s11664-017-5876-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5876-z

Keywords

Navigation