Skip to main content
Log in

Development and characterization of biopolymer electrolyte based on gellan gum for the fabrication of solid-state sodium-ion battery

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present work, a solid biopolymer membrane (SBPM) with gellan gum (GG) and sodium perchlorate (NaClO4) has been prepared by solution casting method for the fabrication of solid-state sodium-ion battery (SIB). The prepared SBPMs were carried out with various characterization techniques. X-ray diffraction (XRD) method confirms the crystalline/amorphous nature of the prepared biopolymer membranes (BPMs), and the membrane with the composition of 1g GG: 0.6 M.wt% of NaClO4 exhibits high amorphous nature. Fourier transform infrared (FTIR) spectroscopy reveals the complexation between the host biopolymer GG and NaClO4. The glass transition temperature (Tg) of prepared membranes is examined using differential scanning calorimetry (DSC), and the BPM with the concentration of 1g GG: 0.6 M.wt% of NaClO4 results with low Tg value (42.70 °C) in contrast to other salt-added membranes. From AC impedance analysis, the ionic conductivity calculated for pure GG is 3.87±0.15 ×10−6 S cm−1, and on addition of salt, the membrane 1g GG: 0.6 M.wt% of NaClO4 exhibits enhanced ionic conductivity of 4.85±0.11 ×10−3 S cm−1 at room temperature. Surface morphology analysis and thermal stability of the prepared BPMs have been examined using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Transference number measurement has been done to confirm that the conduction is mainly due to ions. The electrochemical stability for the highest ion conducting membrane has been analyzed using linear sweep voltammetry (LSV). The cycling stability for the prepared biopolymer electrolyte of 1g GG: 0.6 M.wt% of NaClO4 has been obtained using cyclic voltammetry (CV) analysis. The solid-state primary sodium ion battery (SIB) has been constructed using the highest ion conducting membrane and results in an open circuit voltage (OCV) of 2.99 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are not publicly available [the paper is still not published]. But the data is available from the corresponding author upon reasonable request.

References

  1. Abraham KM (2020) How comparable are sodium-ion batteries to lithium ion counterparts? ACS Energy Lett 5:3544–3547

    Article  CAS  Google Scholar 

  2. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28(13):2324–2328

    Article  CAS  Google Scholar 

  3. Ye L, Feng Z (2010) Polymer electrolytes fundamentals and applications, vol 551. Wood Head Publishing Limited

    Google Scholar 

  4. Mohiuddin M, Kumar B, Haque S (2017) Biopolymer composites in photovoltaics and photodetectors. Biopolymer Compos Electron:459–486

  5. Changyu T, Ken H, Qiang F, Pulickel MA, Haleh A (2012) High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett 12:1152–1156

    Article  Google Scholar 

  6. Hadi JM, Aziz SB, Saeed RS, Brza MA, Abdulwahid RT, Hamsan MH, Abdullah MR, Kadir MF, Muzakir SK (2020) Investigation of ion transport parameters and electrochemical performance of plasticized biocompatible chitosan-based proton conducting polymer composite electrolytes. Membranes 10(11):363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alves RD, Rodrigues LC, Andrade JR, Pawlicka A, Pereira L, Martins R, Silva MM (2013) Study and characterization of a novel polymer electrolyte based on agar doped with magnesium triflate. Mol Cryst Liq Cryst 570(1):1–11

    Article  CAS  Google Scholar 

  8. McCray B, Vilker VL, Nobe K (1991) Reverse osmosis cellulose acetate membranes II dependence of transport properties on acetyl content. J Membr Sci 59(3):317–330

    Article  CAS  Google Scholar 

  9. Perumal P, Selvin PC, Selvasekarapandian S, Sivaraj P (2019) Structural and electrical properties of bio-polymer pectin with LiClO4 solid electrolytes for lithium ion polymer batteries. Mater Today Proc 8:196–202

    Article  CAS  Google Scholar 

  10. Roldan-Cruz C, Garcia-Hernandez A, Vernon-Carter EJ, Alvarez-Ramirez J (2017) Impact of insoluble starch remnants on the behavior of corn starch/glycerol/LiCl solid electrolyte. Ionics 23:1721–1732

    Article  CAS  Google Scholar 

  11. Chitra R, Sathya P, Selvasekarapandian S, Monisha S, Moniha V, Meyvel S (2019) Synthesis and characterization of iota-carrageenan solid biopolymer electrolytes for electrochemical applications. Ionics 25(5):2147–2157

    Article  CAS  Google Scholar 

  12. Naachiyar MR, Ragam M, Selvasekarapandian S, Aristatil G, Hazaana AS, Vignesh MN, Krishna VM (2022) Fabrication of rechargeable proton battery and PEM fuel cell using biopolymer gellan gum incorporated with NH4HCO2 solid electrolyte. J Polym Res 29(8)

  13. Aafrin Hazaana S, Joseph A, Selvasekarapandian S, Meera Naachiyar R, Vengadesh Krishna M, Muniraj Vignesh N (2022) Development and characterization of biopolymer electrolyte based on gellan gum (GG) with lithium chloride (LiCl) for the application of electrochemical devices. Polym Bull 80(5):5291–5311

    Article  Google Scholar 

  14. Majid SR, Sabadini RC, Kanicki J, Pawlicka A (2014) Impedance analysis of gellan gum-poly( vinyl pyrrolidone) membranes. Mol Cryst Liq Cryst 604(1):84–95

    Article  CAS  Google Scholar 

  15. Noor ISM, Majid SR, Arof AK, Djurado D, Claro Neto S, Pawlicka A (2012) Characteristics of gellan gum-LiCF3SO3polymer electrolytes. Solid State Ion 225:649–653

    Article  CAS  Google Scholar 

  16. Halim NFA, Majid SR, Arof AK, Kajzar F, Pawlicka A (2012) Gellan gum-lii polymer electrolytes. Mol Cryst Liq Cryst 554(1):232–238

    Article  CAS  Google Scholar 

  17. Maithilee K, Sathya P, Selvasekarapandian S, Chitra R, Krishna MV, Meyvel S (2022) Na-ion conducting biopolymer electrolyte based on tamarind seed polysaccharide incorporated with sodium perchlorate for primary sodium-ion batteries. Ionics 28:1783–1790

    Article  CAS  Google Scholar 

  18. Naveen Kumar P, Sasikala U, Sharma AK (2013) Investigations on conductivity and discharge profiles of novel (PEO+PEMA) polymer blend electrolyte. Int J Inno Res Sci Eng Tech 2:3575–3582

    Google Scholar 

  19. Infanta Diana M, Selvasekarapandian S, Christopher Selvin P, Vengadesh Krishna M (2022) A physicochemical elucidation of sodium perchlorate incorporated alginate biopolymer: toward all-solid-state sodium-ion battery. J Mater Sci 57:8211–8224

    Article  Google Scholar 

  20. Jansson PE, Lindberg B, Sandford A (1983) Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr Res 124:135–139

    Article  CAS  Google Scholar 

  21. Giavasis I, Harvey LM, McNeil B (2000) Gellan cum. Crit Rev Biotechnol 20:177–211

    Article  CAS  PubMed  Google Scholar 

  22. Milas M, Shi X, Rinaudo M (1990) On the physicochemical properties of gellan gum. Biopolymers 30:451–464

    Article  CAS  PubMed  Google Scholar 

  23. Ilhan Chang (2010) Biopolymer treated Korean residual soil: geotechnical behavior and applications. (Doctoral dissertation, Ph.D. Thesis)

  24. Chang I, Lee M, Tran ATP, Lee S, Kwon YM, Im J, Cho GC (2020) Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Trans Geotech 24:100385

    Article  Google Scholar 

  25. Liu S, Chen X, Zhang Y (2020) Hydrogels and hydrogel composites for 3D and 4D printing applications. 3D 4D Printing Polym Nanocompos Mater:427–465

  26. Nayak AK, Hasnain MS, Pal K, Banerjee I, Pal D (2020) Gum-based hydrogels in drug delivery. In: Biopolymer-Based Formulations. Elsevier, pp 605–645

    Chapter  Google Scholar 

  27. Hu D, Wu D, Huang L, Jiao Y, Li L, Lu L, Zhou C (2018) 3D bioprinting of cell-laden scaffolds for intervertebral disc regeneration. Mater Lett 223:219–222

    Article  CAS  Google Scholar 

  28. Shah JN, Jani GK, Parikh JR (2007) Gellan gum and its applications-a review. Pharmaceutical Information, Pharamainfo, Articles and Blogs, p 5

  29. Khan T, Park JK, Kwon J-H (2007) Functional biopolymers produced by biochemical technology considering applications in food engineering. Korean J Chem Eng 24:816–826

    Article  CAS  Google Scholar 

  30. Silva SS, Rodrigues LC, Fernandes EM, Reis RL (2020) Fundamentals on biopolymers and global demand. In: Biopolymer Membranes and Films. Elsevier, pp 3–34

    Chapter  Google Scholar 

  31. Devlin DJ, Herley PJ (1987) Thermal decomposition and dehydration of sodium perchlorate monohydrate. Reactivity Solid 3(1-2):75–84

    Article  CAS  Google Scholar 

  32. Singh R, Bhattacharya B, Rhee HW, Singh PK (2015) Solid gellan gum polymer electrolyte for energy application. Int J Hydrogen Energy 40(30):9365–9372

    Article  CAS  Google Scholar 

  33. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37(8):1371–1376

    Article  CAS  Google Scholar 

  34. Sudhamania SR, Prasada MS, Sankar KU (2003) DSC and FTIR studies on gellan and polyvinyl alcohol (PVA) blend films. Food Hydrocoll 17:245–250

    Article  Google Scholar 

  35. Monisha S, Mathavan T, Selvasekarapandian S, Benial AMF (2017) Preparation and characterization of cellulose acetate and lithium nitrate for advanced electrochemical devices. Ionics 23(10):2697–2706

    Article  CAS  Google Scholar 

  36. Kumar D, Hashmi SA (2010) Ion transport and ion-filler-polymer interaction in poly (methyl methacrylate)-based, sodium ion conducting gel polymer electrolyte dispersed with silica nanoparticles. J Power Sources 195:5101–5108

    Article  CAS  Google Scholar 

  37. Muthukrishnan M, Shanthi C, Selvasekarapandian S, Premkumar R (2023) Biodegradable flexible proton conducting solid biopolymer membranes based on pectin and ammonium salt for electrochemical applications. Int J Hydrogen Energy 48(14):5387–5401

    Article  CAS  Google Scholar 

  38. Jiang X, Li H, Luo Y, Zhao Y, Hou L (2016) Studies of the plasticizing effect of different hydrophilic inorganic salts on starch/poly (vinyl alcohol) films. Int J Biol Macromol 82:223–230

    Article  CAS  PubMed  Google Scholar 

  39. Boukamp BA (1986) A package for impedance/admittance data analysis. Solid State Ion 18:136–140

    Article  Google Scholar 

  40. Chandra MV, Karthikeyan S, Selvasekarapandian S, Pandi DV, Monisha S, Packiaseeli SA (2016) Characterization of high ionic conducting PVAc–PMMA blend-based polymer electrolyte for electrochemical applications. Ionics 22(12):2409–2424

    Article  CAS  Google Scholar 

  41. Arof A, Naeem M, Hameed F, Jayasundara WJMJSR, Careem M, Teo L, Buraidah M (2014) Quasi solid state dye-sensitized solar cells based on polyvinyl alcohol (PVA) electrolytes containing I−/ I3− redox couple. Opt Quantum Electron 46(1):143–154

    Article  CAS  Google Scholar 

  42. Zhang N, Li X, Ye J, Yang Y, Huang Y, Zhang X, Xiao M (2020) Effect of gellan gum and xanthan gum synergistic interactions and plasticizers on physical properties of plant-based enteric polymer films. Polymers 12(1):121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aromaaa J, Barkerb MH, Lagerstedta A, Torkkelia J, Forséna O (2009) Evaluation of lead anodes and their tendency to manganese dioxide deposition. In: Proceedings of EMC,GDMB, Clausthal-Zellerfeld, p 1

  44. Sulcius A (2008) Interpretation of voltaic cells in chemistry education. J Sci Educ 9(2):114–116

    Google Scholar 

  45. Diana MI, Selvin PC, Selvasekarapandian S, Krishna MV (2021) Investigations on Na-ion conducting electrolyte based on sodium alginate biopolymer for all-solid-state sodium-ion batteries. J Solid State Electrochem 25:2009–2020

    Article  CAS  Google Scholar 

  46. Karthika JS, Vishalakshi B, Naik J (2016) Gellan gum–graft– polyaniline—an electric conducting biopolymer. Int J Biol Macromol 82:61–67

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The entire work has been done by Kani Ajay Babu M and the full manuscript is written by Kani Ajay Babu M. The full manuscript has been corrected by Jayabalakrishnan S. S. The concept of the work is given by Selvasekarapandian S. AC impedance analysis has been done by Aafrin Hazaana S. and Muniraj @ Vignesh N. Construction of primary sodium-ion battery has been done by Meera Naachiyar R.

Corresponding author

Correspondence to S. Selvasekarapandian.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kani Ajay Babu, M., Jayabalakrishnan, S.S., Selvasekarapandian, S. et al. Development and characterization of biopolymer electrolyte based on gellan gum for the fabrication of solid-state sodium-ion battery. Ionics 29, 5249–5265 (2023). https://doi.org/10.1007/s11581-023-05210-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05210-9

Keywords

Navigation