Skip to main content
Log in

A dual-modal probe for NIR fluorogenic and ratiometric photoacoustic imaging of Cys/Hcy in vivo

  • Articles
  • Special Issue: Celebrating the 100th Anniversary of Chemical Sciences in Nanjing University
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Biothiols, such as cysteine (Cys) and homocysteine (Hcy), play vital roles in biological homeostasis and are closely related to various pathological and physiological processes in the living systems. Therefore, the in vivo detection of biothiols is of great importance for early diagnosis of diseases and assessment of disease progression. In this work, we developed a near-infrared (NIR) fluorescence and photoacoustic dual-modal molecular probe (NIR-S) that can be specifically activated by Cys or Hcy. The aryl-thioether substituted cyanine probe can undergo nucleophilic substitution and Smiles rearrangement reaction, resulting in specific turn-on NIR fluorescence and ratiometric photoacoustic responses for Hcy/Cys. Thus, NIR-S not only realizes the specific NIR fluorescence and photoacoustic dual mode imaging to detect Hcy/Cys in solution, but also can be applied to living cells and mice to detect Hcy/Cys. This work provided a practical tool to detect Hcy/Cys levels in vivo, which would be beneficial for the early diagnosis and progress of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giles GI, Tasker KM, Jacob C. Free Radical Biol Med, 2001, 1: 1279–1283

    Article  Google Scholar 

  2. Giles GI, Tasker KM, Collins C, Giles NM, O’rourke E, Jacob C. Biochem J, 2002, 1: 579–585

    Article  Google Scholar 

  3. Shahrokhian S. Anal Chem, 2001, 1: 5972–5978

    Article  Google Scholar 

  4. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. Curr Opin Pharmacol, 2007, 1: 355–359

    Article  Google Scholar 

  5. Ueland PM, Vollset SE. Clin Chem, 2004, 1: 1293–1295

    Article  Google Scholar 

  6. Janáky R, Varga V, Hermann A, Saransaari P, Oja SS. Neurochem Res, 2000, 1: 1397–1405

    Article  Google Scholar 

  7. Ball RO, Courtney-Martin G, Pencharz PB. J Nutrit, 2006, 136: 1682S–1693S

    CAS  PubMed  Google Scholar 

  8. Yin C, Huo F, Zhang J, Martínez-Máñez R, Yang Y, Lv H, Li S. Chem Soc Rev, 2013, 1: 6032–6059

    Article  Google Scholar 

  9. Jung HS, Chen X, Kim JS, Yoon J. Chem Soc Rev, 2013, 42: 6019–6031

    Article  CAS  Google Scholar 

  10. Yue Y, Huo F, Ning P, Zhang Y, Chao J, Meng X, Yin C. J Am Chem Soc, 2017, 1: 3181–3185

    Article  Google Scholar 

  11. Liu Y, Lv X, Liu J, Sun YQ, Guo W. Chem Eur J, 2015, 1: 4747–4754

    Article  Google Scholar 

  12. Niu W, Guo L, Li Y, Shuang S, Dong C, Wong MS. Anal Chem, 2016, 1: 1908–1914

    Article  Google Scholar 

  13. Li J, Pu K. Chem Soc Rev, 2019, 1: 38–71

    Article  Google Scholar 

  14. Niu LY, Chen YZ, Zheng HR, Wu LZ, Tung CH, Yang QZ. Chem Soc Rev, 2015, 1: 6143–6160

    Article  Google Scholar 

  15. Zhang Y, Shao X, Wang Y, Pan F, Kang R, Peng F, Huang Z, Zhang W, Zhao W. Chem Commun, 2015, 1: 4245–4248

    Article  Google Scholar 

  16. Fang H, Chen Y, Shi X, Bai Y, Chen Z, Han Z, Zhang Y, He W, Guo Z. New J Chem, 2019, 1: 14800–14805

    Article  Google Scholar 

  17. Gujrati V, Mishra A, Ntziachristos V. Chem Commun, 2017, 1: 4653–4672

    Article  Google Scholar 

  18. Wang LV, Hu S. Science, 2012, 1: 1458–1462

    Article  Google Scholar 

  19. Ntziachristos V, Razansky D. Chem Rev, 2010, 1: 2783–2794

    Article  Google Scholar 

  20. Shi B, Gu X, Fei Q, Zhao C. Chem Sci, 2017, 1: 2150–2155

    Article  Google Scholar 

  21. Anees P, Joseph J, Sreejith S, Menon NV, Kang Y, Wing-Kwong Yu S, Ajayaghosh A, Zhao Y. Chem Sci, 2016, 1: 4110–4116

    Article  Google Scholar 

  22. Chen Q, Liang C, Sun X, Chen J, Yang Z, Zhao H, Feng L, Liu Z. Proc Natl Acad Sci USA, 2017, 1: 5343–5348

    Article  Google Scholar 

  23. Zhang J, Zhen X, Upputuri PK, Pramanik M, Chen P, Pu K. Adv Mater, 2017, 29: 1604764

    Article  Google Scholar 

  24. Reinhardt CJ, Zhou EY, Jorgensen MD, Partipilo G, Chan J. J Am Chem Soc, 2018, 1: 1011–1018

    Article  Google Scholar 

  25. Knox HJ, Hedhli J, Kim TW, Khalili K, Dobrucki LW, Chan J. Nat Commun, 2017, 8: 1794

    Article  Google Scholar 

  26. Zhang J, Zhen X, Zeng J, Pu K. Anal Chem, 2018, 1: 9301–9307

    Article  Google Scholar 

  27. Cheng P, Zhang J, Huang J, Miao Q, Xu C, Pu K. Chem Sci, 2018, 1: 6340–6347

    Article  Google Scholar 

  28. Xiao H, Wu C, Li P, Gao W, Zhang W, Zhang W, Tong L, Tang B. Chem Sci, 2017, 1: 7025–7030

    Article  Google Scholar 

  29. Zhou EY, Knox HJ, Liu C, Zhao W, Chan J. J Am Chem Soc, 2019, 1: 17601–17609

    Article  Google Scholar 

  30. Teng L, Song G, Liu Y, Han X, Li Z, Wang Y, Huan S, Zhang XB, Tan W. J Am Chem Soc, 2019, 1: 13572–13581

    Article  Google Scholar 

  31. Reinhardt CJ, Chan J. Biochemistry, 2018, 1: 194–199

    Article  Google Scholar 

  32. Liu Y, Teng L, Liu HW, Xu C, Guo H, Yuan L, Zhang XB, Tan W. Sci China Chem, 2019, 1: 1275–1285

    Article  Google Scholar 

  33. Sun W, Guo S, Hu C, Fan J, Peng X. Chem Rev, 2016, 1: 7768–7817

    Article  Google Scholar 

  34. Huang J, Li J, Lyu Y, Miao Q, Pu K. Nat Mater, 2019, 1: 1133–1143

    Article  Google Scholar 

  35. Chen Z, Mu X, Han Z, Yang S, Zhang C, Guo Z, Bai Y, He W. J Am Chem Soc, 2019, 1: 17973–17977

    Article  Google Scholar 

  36. Owens EA, Henary M, El Fakhri G, Choi HS. Acc Chem Res, 2016, 1: 1731–1740

    Article  Google Scholar 

  37. Wang S, Fan Y, Li D, Sun C, Lei Z, Lu L, Wang T, Zhang F. Nat Commun, 2019, 10: 1058

    Article  Google Scholar 

  38. Feng Z, Yu X, Jiang M, Zhu L, Zhang Y, Yang W, Xi W, Li G, Qian J. Theranostics, 2019, 1: 5706–5719

    Article  Google Scholar 

  39. Song F, Peng X, Lu E, Wang Y, Zhou W, Fan J. Tetrahedron Lett, 2005, 46: 4817–4820

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21907050, 21977044, 21571099, 21731004), the Fundamental Research Funds for the Central Universities (020514380172), the Natural Science Foundation of Jiangsu Province (BK20190282) and the National Basic Research Program of China (2015CB856300). We gratefully thank Shiping Yang (Key Laboratory of Resource Chemistry, Shanghai Normal University) for PA measurement by providing MSOT in Vision photoacoustic scanner.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuncong Chen or Weijiang He.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, H., Chen, Y., Wang, Y. et al. A dual-modal probe for NIR fluorogenic and ratiometric photoacoustic imaging of Cys/Hcy in vivo. Sci. China Chem. 63, 699–706 (2020). https://doi.org/10.1007/s11426-019-9688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9688-y

Keywords

Navigation