Skip to main content

Advertisement

Log in

Imaging the time course, morphology, neuronal tissue compression, and resolution of cerebral microhemorrhages in mice using intravital two-photon microscopy: insights into arteriolar, capillary, and venular origin

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Cerebral microhemorrhages (CMHs, microbleeds), a manifestation of age-related cerebral small vessel disease, contribute to the pathogenesis of cognitive decline and dementia in older adults. Histological studies have revealed that CMHs exhibit distinct morphologies, which may be attributed to differences in intravascular pressure and the size of the vessels of origin. Our study aimed to establish a direct relationship between the size/morphology of CMHs and the size/anatomy of the microvessel of origin. To achieve this goal, we adapted and optimized intravital two-photon microscopy-based imaging methods to monitor the development of CMHs in mice equipped with a chronic cranial window upon high-energy laser light-induced photodisruption of a targeted cortical arteriole, capillary, or venule. We assessed the time course of extravasation of fluorescently labeled blood and determined the morphology and size/volume of the induced CMHs. Our findings reveal striking similarities between the bleed morphologies observed in hypertension-induced CMHs in models of aging and those originating from different targeted vessels via multiphoton laser ablation. Arteriolar bleeds, which are larger (> 100 μm) and more widely dispersed, are distinguished from venular bleeds, which are smaller and exhibit a distinct diffuse morphology. Capillary bleeds are circular and smaller (< 10 μm) in size. Our study supports the concept that CMHs can occur at any location in the vascular tree, and that each type of vessel produces microbleeds with a distinct morphology. Development of CMHs resulted in immediate constriction of capillaries, likely due to pericyte activation and constriction of precapillary arterioles. Additionally, tissue displacement observed in association with arteriolar CMHs suggests that they can affect an area with a radius of ~ 50 μm to ~ 100 μm, creating an area at risk for ischemia. Longitudinal imaging of CMHs allowed us to visualize reactive astrocytosis and bleed resolution during a 30-day period. Our study provides new insights into the development and morphology of CMHs, highlighting the potential clinical implications of differentiating between the types of vessels involved in the pathogenesis of CMHs. This information may help in the development of targeted interventions aimed at reducing the risk of cerebral small vessel disease-related cognitive decline and dementia in older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akoudad S, et al. Cerebral microbleeds and the risk of mortality in the general population. Eur J Epidemiol. 2013;28(10):815–21.

    Article  PubMed  Google Scholar 

  2. Akoudad S, et al. Cerebral microbleeds are associated with an increased risk of stroke: the Rotterdam study. Circulation. 2015;132(6):509–16.

    Article  PubMed  Google Scholar 

  3. Akoudad S, et al. Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurol. 2016;73(8):934–43.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ayaz M, et al. Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia. J Magn Reson Imaging. 2010;31(1):142–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Benedictus MR, et al. Microbleeds, mortality, and stroke in Alzheimer disease: the MISTRAL study. JAMA Neurol. 2015;72(5):539–45.

    Article  PubMed  Google Scholar 

  6. Chai C, et al. Increased number and distribution of cerebral microbleeds is a risk factor for cognitive dysfunction in hemodialysis patients: a longitudinal study. Medicine (Baltimore). 2016;95(12):e2974.

    Article  CAS  PubMed  Google Scholar 

  7. Cordonnier C, et al. Prevalence and severity of microbleeds in a memory clinic setting. Neurology. 2006;66(9):1356–60.

    Article  CAS  PubMed  Google Scholar 

  8. De Reuck JL, et al. The significance of cortical cerebellar microbleeds and microinfarcts in neurodegenerative and cerebrovascular diseases. a post-mortem 7.0-tesla magnetic resonance study with neuropathological correlates. Cerebrovasc Dis. 2015;39(2):138–43.

    Article  PubMed  Google Scholar 

  9. Fisher M, et al. Cerebral microbleeds in the elderly: a pathological analysis. Stroke. 2010;41(12):2782–5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Goos JD, et al. Incidence of cerebral microbleeds: a longitudinal study in a memory clinic population. Neurology. 2010;74(24):1954–60.

    Article  CAS  PubMed  Google Scholar 

  11. Gregg NM, et al. Incidental cerebral microbleeds and cerebral blood flow in elderly individuals. JAMA Neurol. 2015;72(9):1021–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Poels MM, et al. Incidence of cerebral microbleeds in the general population: the Rotterdam Scan study. Stroke. 2011;42(3):656–61.

    Article  PubMed  Google Scholar 

  13. Poels MM, et al. Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan study. Neurology. 2012;78(5):326–33.

    Article  CAS  PubMed  Google Scholar 

  14. Valenti R, et al. Cerebral microbleeds in patients with mild cognitive impairment and small vessel disease: the Vascular Mild Cognitive Impairment (VMCI)-Tuscany study. J Neurol Sci. 2016;368:195–202.

    Article  PubMed  Google Scholar 

  15. Shams S, et al. Cerebral microbleeds: different prevalence, topography, and risk factors depending on dementia diagnosis-the Karolinska Imaging Dementia study. AJNR Am J Neuroradiol. 2015;36(4):661–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wiegman AF, et al. Cerebral microbleeds in a multiethnic elderly community: demographic and clinical correlates. J Neurol Sci. 2014;345(1–2):125–30.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Romero JR, et al. Risk factors, stroke prevention treatments, and prevalence of cerebral microbleeds in the Framingham Heart study. Stroke. 2014;45(5):1492–4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jia Z, et al. Hypertension increases the risk of cerebral microbleed in the territory of posterior cerebral artery: a study of the association of microbleeds categorized on a basis of vascular territories and cardiovascular risk factors. J Stroke Cerebrovasc Dis. 2014;23(1):e5-11.

    Article  PubMed  Google Scholar 

  19. Gao Z, et al. Cerebral microbleeds are associated with deep white matter hyperintensities, but only in hypertensive patients. PLoS ONE. 2014;9(3):e91637.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Benedictus MR, et al. Specific risk factors for microbleeds and white matter hyperintensities in Alzheimer’s disease. Neurobiol Aging. 2013;34(11):2488–94.

    Article  CAS  PubMed  Google Scholar 

  21. Van der Flier WM, Cordonnier C. Microbleeds in vascular dementia: clinical aspects. Exp Gerontol. 2012;47(11):853–7.

    Article  PubMed  Google Scholar 

  22. Werring DJ, Gregoire SM, Cipolotti L. Cerebral microbleeds and vascular cognitive impairment. J Neurol Sci. 2010;299(1–2):131–5.

    Article  PubMed  Google Scholar 

  23. Ungvari Z, et al. Cerebral microhemorrhages: mechanisms, consequences, and prevention. Am J Physiol Heart Circ Physiol. 2017;312(6):H1128-h1143.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kato H, et al. Silent cerebral microbleeds on T2*-weighted MRI: correlation with stroke subtype, stroke recurrence, and leukoaraiosis. Stroke. 2002;33(6):1536–40.

    Article  PubMed  Google Scholar 

  25. Toth P, et al. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol. 2017;312(1):H1–20.

    Article  PubMed  Google Scholar 

  26. Springo Z, et al. Aging impairs myogenic adaptation to pulsatile pressure in mouse cerebral arteries. J Cereb Blood Flow Metab. 2015;35(4):527–30.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Toth P, et al. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab. 2014;34(12):1887–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toth P, et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab. 2013;33(11):1732–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Toth P, et al. Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. Am J Physiol Heart Circ Physiol. 2013;305(12):H1698–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Reuck JL, et al. Microbleeds in postmortem brains of patients with Alzheimer disease: a T2*-weighted gradient-echo 7.0 T magnetic resonance imaging study. Alzheimer Dis Assoc Disord. 2013;27(2):162–7.

    Article  PubMed  Google Scholar 

  31. Freeze WM, et al. Blood-brain barrier leakage and microvascular lesions in cerebral amyloid angiopathy. Stroke. 2019;50(2):328–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ni J, et al. Cortical localization of microbleeds in cerebral amyloid angiopathy: an ultra high-field 7T MRI study. J Alzheimers Dis. 2015;43(4):1325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park JH, et al. Pathogenesis of cerebral microbleeds: in vivo imaging of amyloid and subcortical ischemic small vessel disease in 226 individuals with cognitive impairment. Ann Neurol. 2013;73(5):584–93.

    Article  CAS  PubMed  Google Scholar 

  34. van Veluw SJ, et al. Different microvascular alterations underlie microbleeds and microinfarcts. Ann Neurol. 2019;86(2):279–92.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Graff-Radford J, et al. Cerebral amyloid angiopathy burden and cerebral microbleeds: Pathological evidence for distinct phenotypes. J Alzheimers Dis. 2021;81(1):113–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rotta J, et al. Detection of cerebral microbleeds with venous connection at 7-Tesla MRI. Neurology. 2021;96(16):e2048–57.

    Article  CAS  PubMed  Google Scholar 

  37. Shaaban CE, et al. In vivo imaging of venous side cerebral small-vessel disease in older adults: An MRI Method at 7T. AJNR Am J Neuroradiol. 2017;38(10):1923–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang R, et al. The relationship between deep medullary veins score and the severity and distribution of intracranial microbleeds. Neuroimage Clin. 2019;23:101830.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dinc N, et al. Thrombosis of the straight sinus and microbleedings due to deep seated arteriovenous fistula - hemodynamic changes, cognitive impairment and improvement after microsurgery. A technical report. J Clin Neurosci. 2019;68:317–21.

  40. Ungvari Z, et al. Repeated Valsalva maneuvers promote symptomatic manifestations of cerebral microhemorrhages: implications for the pathogenesis of vascular cognitive impairment in older adults. Geroscience. 2018;40(5–6):485–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nyul-Toth A, et al. Cerebral venous congestion exacerbates cerebral microhemorrhages in mice. Geroscience. 2022;44(2):805–16.

  42. Miller LR, et al. Increased susceptibility to cerebral microhemorrhages is associated with imaging signs of microvascular degeneration in the retina in an insulin-like growth factor 1 deficient mouse model of accelerated aging. Front Aging Neurosci. 2022;14:788296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tarantini S, et al. Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype. Aging Cell. 2017;16(3):469–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Toth P, et al. Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection. Aging Cell. 2015;14(3):400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wakisaka Y, et al. Critical role for copper/zinc-superoxide dismutase in preventing spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice. Stroke. 2010;41(4):790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wakisaka Y, et al. Spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice. J Cereb Blood Flow Metab. 2010;30(1):56–69.

    Article  CAS  PubMed  Google Scholar 

  47. Wakisaka Y, et al. Oxidative stress through activation of NAD(P)H oxidase in hypertensive mice with spontaneous intracranial hemorrhage. J Cereb Blood Flow Metab. 2008;28(6):1175–85.

    Article  CAS  PubMed  Google Scholar 

  48. Braun DJ, et al. Genetic knockout of myosin light chain kinase (MLCK210) prevents cerebral microhemorrhages and attenuates neuroinflammation in a mouse model of vascular cognitive impairment and dementia. Geroscience. 2019;41(5):671–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fisher M, et al. Therapeutic modulation of cerebral microhemorrhage in a mouse model of cerebral amyloid angiopathy. Stroke. 2011;42(11):3300–3.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hur J, et al. Cerebrovascular beta-amyloid deposition and associated microhemorrhages in a Tg2576 Alzheimer mouse model are reduced with a DHA-enriched diet. FASEB J. 2018;32(9):4972–83.

    Article  CAS  PubMed  Google Scholar 

  51. Nyul-Toth A, et al. Increases in hypertension-induced cerebral microhemorrhages exacerbate gait dysfunction in a mouse model of Alzheimer’s disease. Geroscience. 2020;42(6):1685–98.

  52. Nishimura N, et al. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat Methods. 2006;3(2):99–108.

    Article  CAS  PubMed  Google Scholar 

  53. Nyul-Toth A, et al. Demonstration of age-related blood-brain barrier disruption and cerebromicrovascular rarefaction in mice by longitudinal intravital two-photon microscopy and optical coherence tomography. Am J Physiol Heart Circ Physiol. 2021;320(4):H1370–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shih AY, et al. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab. 2012;32(7):1277–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ahn SJ, et al. Diverse inflammatory response after cerebral microbleeds includes coordinated microglial migration and proliferation. Stroke. 2018;49(7):1719–26.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Delekate A, et al. Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model. Nat Commun. 2014;5:5422.

    Article  PubMed  Google Scholar 

  57. Martín R, et al. Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science. 2015;349(6249):730–4.

    Article  PubMed  Google Scholar 

  58. Morquette P, et al. An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nat Neurosci. 2015;18(6):844–54.

    Article  CAS  PubMed  Google Scholar 

  59. Nimmerjahn A, et al. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods. 2004;1(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  60. Tarantini S, et al. Effect of genetic depletion of MMP-9 on neurological manifestations of hypertension-induced intracerebral hemorrhages in aged mice. Geroscience. 2021;43(5):2611–9.

  61. Pétrault M, et al. Cerebral microbleeds: beyond the macroscope. Int J Stroke. 2019;14(5):468–75.

    Article  PubMed  Google Scholar 

  62. Charidimou A, Jäger HR, Werring DJ. Cerebral microbleed detection and mapping: principles, methodological aspects and rationale in vascular dementia. Exp Gerontol. 2012;47(11):843–52.

    Article  PubMed  Google Scholar 

  63. Golino P, et al. Local platelet activation causes vasoconstriction of large epicardial canine coronary arteries in vivo. Thromboxane A2 and serotonin are possible mediators. Circulation. 1989;79(1):154–66.

    Article  CAS  PubMed  Google Scholar 

  64. Bell RD, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010;68(3):409–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hartmann DA, Coelho-Santos V, Shih AY. Pericyte control of blood flow across microvascular zones in the central nervous system. Annu Rev Physiol. 2022;84:331–54.

    Article  PubMed  Google Scholar 

  66. Hibbs E, Love S, Miners JS. Pericyte contractile responses to endothelin-1 and abeta peptides: assessment by electrical impedance assay. Front Cell Neurosci. 2021;15:723953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hirunpattarasilp C, et al. Hyperoxia evokes pericyte-mediated capillary constriction. J Cereb Blood Flow Metab. 2022;42(11):2032–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hirunpattarasilp C, et al. SARS-CoV-2 triggers pericyte-mediated cerebral capillary constriction. Brain. 2023;146(2):727–38.

    Article  PubMed  Google Scholar 

  69. Liu Y, et al. 20-HETE-promoted cerebral blood flow autoregulation is associated with enhanced pericyte contractility. Prostaglandins Other Lipid Mediat. 2021;154:106548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Levit A, Hachinski V, Whitehead SN. Neurovascular unit dysregulation, white matter disease, and executive dysfunction: the shared triad of vascular cognitive impairment and Alzheimer disease. Geroscience. 2020;42(2):445–65.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tarantini S, et al. Impaired neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol. 2017;94:52–8.

    Article  CAS  PubMed  Google Scholar 

  72. Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014;94(4):1077–98.

    Article  PubMed  Google Scholar 

  73. Bagi Z, et al. Vasodilator dysfunction and oligodendrocyte dysmaturation in aging white matter. Ann Neurol. 2018;83(1):142–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ungvari Z, et al. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol. 2018;15(9):555–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rajani RM, Williams A. Endothelial cell-oligodendrocyte interactions in small vessel disease and aging. Clin Sci (Lond). 2017;131(5):369–79.

    Article  PubMed  Google Scholar 

  76. Manukjan N, et al. A systematic review of WNT signaling in endothelial cell oligodendrocyte interactions: potential relevance to cerebral small vessel disease. Cells. 2020;9(6):1545.

  77. Dimovasili C, et al. Aging compromises oligodendrocyte precursor cell maturation and efficient remyelination in the monkey brain. Geroscience. 2023;45(1):249–64.

    Article  CAS  PubMed  Google Scholar 

  78. Skaper SD. Oligodendrocyte precursor cells as a therapeutic target for demyelinating diseases. Prog Brain Res. 2019;245:119–44.

    Article  PubMed  Google Scholar 

  79. Chojdak-Lukasiewicz J, et al. Cerebral small vessel disease: a review. Adv Clin Exp Med. 2021;30(3):349–56.

    Article  PubMed  Google Scholar 

  80. Jellinger KA. Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm (Vienna). 2002;109(5–6):813–36.

    Article  CAS  PubMed  Google Scholar 

  81. Vemuri P, et al. White matter abnormalities are key components of cerebrovascular disease impacting cognitive decline. Brain Commun. 2021;3(2):fcab076.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhou H, Tang Y, Yuan Z. White matter asymmetries in patients with cerebral small vessel disease. J Integr Neurosci. 2018;17(2):159–67.

    Article  PubMed  Google Scholar 

  83. Sekhon LH, et al. Chronic cerebral hypoperfusion and impaired neuronal function in rats. Stroke. 1994;25(5):1022–7.

    Article  CAS  PubMed  Google Scholar 

  84. Lee C, et al. Imaging cerebral blood flow in the cognitively normal aging brain with arterial spin labeling: implications for imaging of neurodegenerative disease. J Neuroimaging. 2009;19(4):344–52.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Shibasaki H. Human brain mapping: hemodynamic response and electrophysiology. Clin Neurophysiol. 2008;119(4):731–43.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the American Heart Association (ANT: AHA834339), the Oklahoma Center for the Advancement of Science and Technology, the National Institute on Aging (RF1AG072295, R01AG055395, R01AG068295; R01AG070915, K01AG073614), the National Institute of Neurological Disorders and Stroke (R01NS100782), the National Cancer Institute (R01CA255840), the Oklahoma Shared Clinical and Translational Resources (U54GM104938) with an Institutional Development Award (IDeA) from NIGMS, the Presbyterian Health Foundation, the Reynolds Foundation, the Oklahoma Nathan Shock Center (P30AG050911), and the Cellular and Molecular GeroScience CoBRE (P20GM125528). PT was also supported by grants from the National Research, Development and Innovation Office (OTKA K-134555), the Hungarian Academy of Sciences Bolyai Research Scholarship, National Clinical Neuroscience Laboratory (RRF-2.3.1–21-2022–00011), and the Thematic Excellence Program 2021 Health Sub-programme of the Ministry for Innovation and Technology in Hungary, within the framework of the EGA-16 project of the University of Pecs. Support was also provided by Project no. TKP2021-NKTA-47, implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme; by funding through the National Cardiovascular Laboratory Program (RRF-2.3.1–21-2022–00003) provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund; Project no. 135784 implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the K_20 funding scheme and the European University for Well-Being (EUniWell) program (grant agreement number: 101004093/ EUniWell/EAC-A02-2019 / EAC-A02-2019–1). The funding sources had no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ádám Nyúl-Tóth or Zoltan Ungvari.

Ethics declarations

Competing interests

Dr. Anna Csiszar serves as Associate Editor for The Journal of Gerontology, Series A: Biological Sciences and Medical Sciences and GeroScience. Dr. Zoltan Ungvari serves as Editor-in-Chief for GeroScience and as Consulting Editor for The American Journal of Physiology-Heart and Circulatory Physiology. Dr. Stefano Tarantini, Dr. Shannon Conley and Dr. Andriy Yabluchanskiy serve as Associate Editors for GeroScience.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, the American Heart Association, or the Presbyterian Health Foundation.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faakye, J., Nyúl-Tóth, Á., Gulej, R. et al. Imaging the time course, morphology, neuronal tissue compression, and resolution of cerebral microhemorrhages in mice using intravital two-photon microscopy: insights into arteriolar, capillary, and venular origin. GeroScience 45, 2851–2872 (2023). https://doi.org/10.1007/s11357-023-00839-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00839-w

Keywords

Navigation