Skip to main content
Log in

Longitudinal lipidomic signatures of all-cause and CVD mortality in American Indians: findings from the Strong Heart Study

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Dyslipidemia is an independent and modifiable risk factor for aging and age-related disorders. Routine lipid panel cannot capture all individual lipid species in blood (i.e., blood lipidome). To date, a comprehensive assessment of the blood lipidome associated with mortality is lacking in large-scale community-dwelling individuals, especially in a longitudinal setting. Using liquid chromatograph-mass spectrometry, we repeatedly measured individual lipid species in 3,821 plasma samples collected at two visits (~ 5.5 years apart) from 1,930 unique American Indians in the Strong Heart Family Study. We first identified baseline lipids associated with risks for all-cause mortality and CVD mortality (mean follow-up period: 17.8 years) in American Indians, followed by replication of top hits in European Caucasians in the Malmö Diet and Cancer-Cardiovascular Cohort (n = 3,943, mean follow-up period: 23.7 years). The model adjusted age, sex, BMI, smoking, hypertension, diabetes, and LDL-c at baseline. We then examined the associations between changes in lipid species and risk of mortality. Multiple testing was controlled by false discovery rate (FDR). We found that baseline levels and longitudinal changes of multiple lipid species, e.g., cholesterol esters, glycerophospholipids, sphingomyelins, and triacylglycerols, were significantly associated with risks of all-cause or CVD mortality. Many lipids identified in American Indians could be replicated in European Caucasians. Network analysis identified differential lipid networks associated with risk of mortality. Our findings provide novel insight into the role of dyslipidemia in disease mortality and offer potential biomarkers for early prediction and risk reduction in American Indians and other ethnic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The phenotype data used in the Strong Heart Family Study can be requested through the Strong Heart Study (https://strongheartstudy.org/). The lipidomic data in the SHS can be obtained from the corresponding author upon a reasonable request. Clinical and lipidomic data used in the Malmö Diet and Cancer-Cardiovascular Cohort can be requested through the MDC Steering Committee (https://www.malmo-kohorter.lu.se/malmo-cohorts).

References

  1. Newman WP, Freedman DS, Voors AW, et al. Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. The Bogalusa Heart Study. N Engl J Med. 1986;314(3):138–44. https://doi.org/10.1056/NEJM198601163140302.

    Article  PubMed  Google Scholar 

  2. Hurtubise J, McLellan K, Durr K, Onasanya O, Nwabuko D, Ndisang JF. The different facets of dyslipidemia and hypertension in atherosclerosis. Curr Atheroscler Rep. 2016;18(12):82. https://doi.org/10.1007/s11883-016-0632-z.

    Article  CAS  PubMed  Google Scholar 

  3. Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet. 1997;349(9061):1269–76. https://doi.org/10.1016/S0140-6736(96)07493-4.

    Article  CAS  PubMed  Google Scholar 

  4. (2020) QuickStats: prevalence of high total cholesterol* among adults aged ≥20 years. MMWR Morb Mortal Wkly Rep 69(22): 690. https://doi.org/10.15585/mmwr.mm6922a5.

  5. Pu J, Romanelli R, Zhao B, et al. Dyslipidemia in special ethnic populations. Endocrinol Metab Clin North Am. 2016;45(1):205–16. https://doi.org/10.1016/j.ecl.2015.09.013.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Frank AT, Zhao B, Jose PO, Azar KM, Fortmann SP, Palaniappan LP. Racial/ethnic differences in dyslipidemia patterns. Circulation. 2014;129(5):570–9. https://doi.org/10.1161/CIRCULATIONAHA.113.005757.

    Article  CAS  PubMed  Google Scholar 

  7. Goff DC, Bertoni AG, Kramer H, et al. Dyslipidemia prevalence, treatment, and control in the Multi-Ethnic Study of Atherosclerosis (MESA): gender, ethnicity, and coronary artery calcium. Circulation. 2006;113(5):647–56. https://doi.org/10.1161/CIRCULATIONAHA.105.552737.

    Article  CAS  PubMed  Google Scholar 

  8. Wang S, Xu L, Jonas JB, You QS, Wang YX, Yang H. Prevalence and associated factors of dyslipidemia in the adult Chinese population. PLoS One. 2011;6(3):e17326. https://doi.org/10.1371/journal.pone.0017326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deen JF, Adams AK, Fretts A, et al. Cardiovascular disease in American Indian and Alaska native youth: unique risk factors and areas of scholarly need. J Am Heart Assoc. 2017; 6(10). https://doi.org/10.1161/JAHA.117.007576.

  10. Breathett K, Sims M, Gross M, et al. Cardiovascular health in American Indians and Alaska natives: a scientific statement from the American Heart Association. Circulation. 2020;141(25):e948–59. https://doi.org/10.1161/CIR.0000000000000773.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Narva AS. Reducing the burden of chronic kidney disease among American Indians. Adv Chronic Kidney Dis. 2008;15(2):168–73. https://doi.org/10.1053/j.ackd.2008.01.011.

    Article  PubMed  Google Scholar 

  12. Ford ES. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care. 2005;28(7):1769–78. https://doi.org/10.2337/diacare.28.7.1769.

    Article  PubMed  Google Scholar 

  13. Guize L, Thomas F, Pannier B, Bean K, Jego B, Benetos A. All-cause mortality associated with specific combinations of the metabolic syndrome according to recent definitions. Diabetes Care. 2007;30(9):2381–7. https://doi.org/10.2337/dc07-0186.

    Article  CAS  PubMed  Google Scholar 

  14. Sigruener A, Kleber ME, Heimerl S, Liebisch G, Schmitz G, Maerz W. Glycerophospholipid and sphingolipid species and mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. PLoS One. 2014;9(1):e85724. https://doi.org/10.1371/journal.pone.0085724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deelen J, Kettunen J, Fischer K, et al. A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nat Commun. 2019;10(1):3346. https://doi.org/10.1038/s41467-019-11311-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qin M, Zhu Q, Lai W, et al. Insights into the prognosis of lipidomic dysregulation for death risk in patients with coronary artery disease. Clin Transl Med. 2020;10(5):e189. https://doi.org/10.1002/ctm2.189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bellis C, Kulkarni H, Mamtani M, et al. Human plasma lipidome is pleiotropically associated with cardiovascular risk factors and death. Circ Cardiovasc Genet. 2014;7(6):854–63. https://doi.org/10.1161/CIRCGENETICS.114.000600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walker ME, Xanthakis V, Peterson LR, et al. Dietary patterns, ceramide ratios, and risk of all-cause and cause-specific mortality: the framingham offspring study. J Nutr. 2020;150(11):2994–3004. https://doi.org/10.1093/jn/nxaa269.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Peterson LR, Xanthakis V, Duncan MS, et al. Ceramide remodeling and risk of cardiovascular events and mortality. J Am Heart Assoc. 2018; 7(10). https://doi.org/10.1161/JAHA.117.007931.

  20. Howard BV, Lee ET, Cowan LD, et al. Rising tide of cardiovascular disease in American Indians. The Strong Heart Study. Circulation. 1999;99(18):2389–95. https://doi.org/10.1161/01.cir.99.18.2389.

    Article  CAS  PubMed  Google Scholar 

  21. Lee ET, Welty TK, Fabsitz R, et al. The Strong Heart Study. A study of cardiovascular disease in American Indians: design and methods. Am J Epidemiol. 1990;132(6):1141–55. https://doi.org/10.1093/oxfordjournals.aje.a115757.

    Article  CAS  PubMed  Google Scholar 

  22. North KE, Howard BV, Welty TK, et al. Genetic and environmental contributions to cardiovascular disease risk in American Indians: the strong heart family study. Am J Epidemiol. 2003;157(4):303–14. https://doi.org/10.1093/aje/kwf208.

    Article  PubMed  Google Scholar 

  23. Miao G, Zhang Y, Huo Z, et al. Longitudinal plasma lipidome and risk of type 2 diabetes in a large sample of american indians with normal fasting glucose: The Strong Heart Family Study. Diabetes Care. 2021;44(12):2664–72. https://doi.org/10.2337/dc21-0451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berglund G, Elmstähl S, Janzon L, Larsson SA. The malmo diet and cancer study. Design and feasibility. J Intern Med. 1993;233(1):45–51. https://doi.org/10.1111/j.1365-2796.1993.tb00647.x.

    Article  CAS  PubMed  Google Scholar 

  25. Ottosson F, Emami Khoonsari P, Gerl MJ, Simons K, Melander O, Fernandez C. A plasma lipid signature predicts incident coronary artery disease. Int J Cardiol. 2021;331:249–54. https://doi.org/10.1016/j.ijcard.2021.01.059.

    Article  PubMed  Google Scholar 

  26. Lee ET, Cowan LD, Welty TK, et al. All-cause mortality and cardiovascular disease mortality in three American Indian populations, aged 45–74 years, 1984–1988. The Strong Heart Study. Am J Epidemiol. 1998;147(11):995–1008. https://doi.org/10.1093/oxfordjournals.aje.a009406.

    Article  CAS  PubMed  Google Scholar 

  27. Drake I, Gullberg B, Sonestedt E, et al. Scoring models of a diet quality index and the predictive capability of mortality in a population-based cohort of Swedish men and women. Public Health Nutr. 2013;16(3):468–78. https://doi.org/10.1017/S1368980012002789.

    Article  PubMed  Google Scholar 

  28. Hallengren E, Almgren P, Engström G, et al. Fasting levels of high-sensitivity growth hormone predict cardiovascular morbidity and mortality: the Malmö Diet and Cancer study. J Am Coll Cardiol. 2014;64(14):1452–60. https://doi.org/10.1016/j.jacc.2014.03.063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee JS, Chang PY, Zhang Y, Kizer JR, Best LG, Howard BV. Triglyceride and HDL-C dyslipidemia and risks of coronary heart disease and ischemic stroke by glycemic dysregulation status: The Strong Heart Study. Diabetes Care. 2017;40(4):529–37. https://doi.org/10.2337/dc16-1958.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chiuve SE, Fung TT, Rimm EB, et al. Alternative dietary indices both strongly predict risk of chronic disease. J Nutr. 2012;142(6):1009–18. https://doi.org/10.3945/jn.111.157222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rosvall M, Ostergren PO, Hedblad B, Isacsson SO, Janzon L, Berglund G. Occupational status, educational level, and the prevalence of carotid atherosclerosis in a general population sample of middle-aged Swedish men and women: results from the Malmö Diet and Cancer Study. Am J Epidemiol. 2000;152(4):334–46. https://doi.org/10.1093/aje/152.4.334.

    Article  CAS  PubMed  Google Scholar 

  32. Surma MA, Herzog R, Vasilj A, et al. An automated shotgun lipidomics platform for high throughput, comprehensive, and quantitative analysis of blood plasma intact lipids. Eur J Lipid Sci Technol. 2015;117(10):1540–9. https://doi.org/10.1002/ejlt.201500145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lauber C, Gerl MJ, Klose C, Ottosson F, Melander O, Simons K. Lipidomic risk scores are independent of polygenic risk scores and can predict incidence of diabetes and cardiovascular disease in a large population cohort. PLoS Biol. 2022;20(3):e3001561. https://doi.org/10.1371/journal.pbio.3001561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Herzog R, Schuhmann K, Schwudke D, et al. LipidXplorer: a software for consensual cross-platform lipidomics. PLoS One. 2012;7(1):e29851. https://doi.org/10.1371/journal.pone.0029851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58(2):109–30. https://doi.org/10.1016/S0169-7439(01)00155-1.

    Article  CAS  Google Scholar 

  36. Storey JD. A direct approach to false discovery rates. J R Stat Soc Ser B (Stat Methodol). 2002;64(3):479–98.

    Article  Google Scholar 

  37. Storey John D, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci. 2003;100(16):9440–5. https://doi.org/10.1073/pnas.1530509100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Henderson R, Oman P. Effect of Frailty on marginal regression estimates in survival analysis. J R Stat Soc Ser B (Stat Methodol). 1999;61(2):367–79.

    Article  Google Scholar 

  39. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Langfelder P, Luo R, Oldham MC, Horvath S. Is my network module preserved and reproducible? PLoS Comput Biol. 2011;7(1):e1001057. https://doi.org/10.1371/journal.pcbi.1001057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang B, Gaiteri C, Bodea LG, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153(3):707–20. https://doi.org/10.1016/j.cell.2013.03.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tofte N, Suvitaival T, Ahonen L, et al. Lipidomic analysis reveals sphingomyelin and phosphatidylcholine species associated with renal impairment and all-cause mortality in type 1 diabetes. Sci Rep. 2019;9(1):16398. https://doi.org/10.1038/s41598-019-52916-w

  43. Alshehry ZH, Mundra PA, Barlow CK, et al. Plasma lipidomic profiles improve on traditional risk factors for the prediction of cardiovascular events in type 2 diabetes mellitus. Circulation. 2016;134(21):1637–50. https://doi.org/10.1161/CIRCULATIONAHA.116.023233.

    Article  CAS  PubMed  Google Scholar 

  44. Mundra PA, Barlow CK, Nestel PJ, et al. Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. JCI Insight. 2018; 3(17). https://doi.org/10.1172/jci.insight.121326

  45. Razquin C, Toledo E, Clish CB, et al. Plasma lipidomic profiling and risk of type 2 diabetes in the PREDIMED trial. Diabetes Care. 2018;41(12):2617–24. https://doi.org/10.2337/dc18-0840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen H, Chen L, Liu D, et al. Combined clinical phenotype and lipidomic analysis reveals the impact of chronic kidney disease on lipid metabolism. J Proteome Res. 2017;16(4):1566–78. https://doi.org/10.1021/acs.jproteome.6b00956.

    Article  CAS  PubMed  Google Scholar 

  47. Stegemann C, Pechlaner R, Willeit P, et al. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation. 2014;129(18):1821–31. https://doi.org/10.1161/CIRCULATIONAHA.113.002500.

    Article  CAS  PubMed  Google Scholar 

  48. Zeng W, Beyene HB, Kuokkanen M, et al. Lipidomic profiling in the Strong Heart Study identified American Indians at risk of chronic kidney disease. Kidney Int. 2022. https://doi.org/10.1016/j.kint.2022.06.023.

    Article  PubMed  Google Scholar 

  49. Subedi P, Palma-Gudiel H, Fiehn O, et al. Lipidomics profiling of biological aging in American Indians: the Strong Heart Family Study. Geroscience. 2022. https://doi.org/10.1007/s11357-022-00638-9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Miao G, Deen J, Struzeski JB, et al. Plasma lipidomic profile of depressive symptoms: a longitudinal study in a large sample of community-dwelling American Indians in the strong heart study. Mol Psychiatry. 2023. https://doi.org/10.1038/s41380-023-01948-w.

    Article  PubMed  Google Scholar 

  51. Volinsky R, Kinnunen PK. Oxidized phosphatidylcholines in membrane-level cellular signaling: from biophysics to physiology and molecular pathology. FEBS J. 2013;280(12):2806–16. https://doi.org/10.1111/febs.12247.

    Article  CAS  PubMed  Google Scholar 

  52. Norris PC, Gosselin D, Reichart D, Glass CK, Dennis EA. Phospholipase A2 regulates eicosanoid class switching during inflammasome activation. Proc Natl Acad Sci U S A. 2014;111(35):12746–51. https://doi.org/10.1073/pnas.1404372111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang F, Wang K, Shen J. Lipoprotein-associated phospholipase A2: The story continues. Med Res Rev. 2020;40(1):79–134. https://doi.org/10.1002/med.21597.

    Article  CAS  PubMed  Google Scholar 

  54. Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine Metabolism in Health and Disease. Int Rev Cell Mol Biol. 2016;321:29–88. https://doi.org/10.1016/bs.ircmb.2015.10.001.

    Article  CAS  PubMed  Google Scholar 

  55. Wymann MP, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol. 2008;9(2):162–76. https://doi.org/10.1038/nrm2335.

    Article  CAS  PubMed  Google Scholar 

  56. Dickson EJ, Hille B. Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J. 2019;476(1):1–23. https://doi.org/10.1042/BCJ20180022.

    Article  CAS  PubMed  Google Scholar 

  57. Braverman NE. Moser AB (2012) Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta. 1822;9:1442–52. https://doi.org/10.1016/j.bbadis.2012.05.008.

    Article  CAS  Google Scholar 

  58. Jiang XC, Paultre F, Pearson TA, et al. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol. 2000;20(12):2614–8. https://doi.org/10.1161/01.atv.20.12.2614.

    Article  CAS  PubMed  Google Scholar 

  59. Floegel A, Kühn T, Sookthai D, et al. Serum metabolites and risk of myocardial infarction and ischemic stroke: a targeted metabolomic approach in two German prospective cohorts. Eur J Epidemiol. 2018;33(1):55–66. https://doi.org/10.1007/s10654-017-0333-0.

    Article  CAS  PubMed  Google Scholar 

  60. Cutler RG, Mattson MP. Sphingomyelin and ceramide as regulators of development and lifespan. Mech Ageing Dev. 2001;122(9):895–908. https://doi.org/10.1016/s0047-6374(01)00246-9.

    Article  CAS  PubMed  Google Scholar 

  61. Taniguchi M. Okazaki T (2014) The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration-from cell and animal models to human disorders. Biochim Biophys Acta. 1841;5:692–703. https://doi.org/10.1016/j.bbalip.2013.12.003.

    Article  CAS  Google Scholar 

  62. Longato L, Ripp K, Setshedi M, et al. Insulin resistance, ceramide accumulation, and endoplasmic reticulum stress in human chronic alcohol-related liver disease. Oxid Med Cell Longev. 2012;2012:479348. https://doi.org/10.1155/2012/479348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rhee EP, Cheng S, Larson MG, et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest. 2011;121(4):1402–11. https://doi.org/10.1172/JCI44442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fernandez C, Sandin M, Sampaio JL, et al. Plasma lipid composition and risk of developing cardiovascular disease. PLoS One. 2013;8(8):e71846. https://doi.org/10.1371/journal.pone.0071846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McCoin CS, Knotts TA, Adams SH. Acylcarnitines–old actors auditioning for new roles in metabolic physiology. Nat Rev Endocrinol. 2015;11(10):617–25. https://doi.org/10.1038/nrendo.2015.129.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ruiz M, Labarthe F, Fortier A, et al. Circulating acylcarnitine profile in human heart failure: a surrogate of fatty acid metabolic dysregulation in mitochondria and beyond. Am J Physiol Heart Circ Physiol. 2017;313(4):H768–81. https://doi.org/10.1152/ajpheart.00820.2016.

    Article  CAS  PubMed  Google Scholar 

  67. Sun L, Liang L, Gao X, et al. Early prediction of developing type 2 diabetes by plasma acylcarnitines: a population-based study. Diabetes Care. 2016;39(9):1563–70. https://doi.org/10.2337/dc16-0232.

    Article  PubMed  Google Scholar 

  68. MahmoudianDehkordi S, Ahmed AT, Bhattacharyya S, et al. Alterations in acylcarnitines, amines, and lipids inform about the mechanism of action of citalopram/escitalopram in major depression. Transl Psychiatry. 2021;11(1):153. https://doi.org/10.1038/s41398-020-01097-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ciavardelli D, Piras F, Consalvo A, et al. Medium-chain plasma acylcarnitines, ketone levels, cognition, and gray matter volumes in healthy elderly, mildly cognitively impaired, or Alzheimer’s disease subjects. Neurobiol Aging. 2016;43:1–12. https://doi.org/10.1016/j.neurobiolaging.2016.03.005.

    Article  CAS  PubMed  Google Scholar 

  70. Melone MAB, Valentino A, Margarucci S, Galderisi U, Giordano A, Peluso G. The carnitine system and cancer metabolic plasticity. Cell Death Dis. 2018;9(2):228. https://doi.org/10.1038/s41419-018-0313-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zárate R, El Jaber-Vazdekis N, Tejera N, Pérez JA, Rodríguez C. Significance of long chain polyunsaturated fatty acids in human health. Clin Transl Med. 2017;6(1):25. https://doi.org/10.1186/s40169-017-0153-6.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Garbarino J, Sturley SL. Saturated with fat: new perspectives on lipotoxicity. Curr Opin Clin Nutr Metab Care. 2009;12(2):110–6. https://doi.org/10.1097/MCO.0b013e32832182ee.

    Article  CAS  PubMed  Google Scholar 

  73. Comporti M. Lipid peroxidation. Biopathological significance. Mol Aspects Med. 1993;14(3):199–207. https://doi.org/10.1016/0098-2997(93)90006-y.

    Article  CAS  PubMed  Google Scholar 

  74. Adeva-Andany MM, Carneiro-Freire N, Seco-Filgueira M, Fernández-Fernández C, Mouriño-Bayolo D. Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion. 2019;46:73–90. https://doi.org/10.1016/j.mito.2018.02.009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Strong Heart Study (SHS) participants, the Indian Health Service facilities, and the participating tribal communities for their extraordinary cooperation and involvement, which has contributed to the success of the SHS. The content expressed in this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Indian Health Service (IHS).

Funding

This study was supported by the National Institute of Health (NIH) grant R01DK107532-01A1 (JZ). The Strong Heart Study (SHS) has been funded in whole or in part with federal funds from the National Heart, Lung, and Blood Institute, National Institute of Health, Department of Health and Human Services, under contract numbers 75N92019D00027, 75N92019D00028, 75N92019D00029, and 75N92019D00030. The study was previously supported by research grants: R01HL109315, R01HL109301, R01HL109284, R01HL109282, and R01HL109319 and by cooperative agreements: U01HL41642, U01HL41652, U01HL41654, U01HL65520, and U01HL65521. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JZ and OF conceptualized and designed the study, obtained the funding and generated the data. GM conducted the statistical analyses. JZ and GM drafted the manuscript. All coauthors provided critical review of the manuscript and contributed to data interpretation.

Corresponding author

Correspondence to Jinying Zhao.

Ethics declarations

Ethics approval

The Strong Heart Family Study (SHFS) protocols were approved by the Institutional Review Boards of participating institutions and the American Indian tribes. The Malmö Diet and Cancer-Cardiovascular Cohort (MDC-CC) was approved by the Ethics Committee at Lund University.

Disclosures

The authors declare no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9353 kb)

Supplementary file2 (XLSX 104 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, G., Fiehn, O., Malloy, K.M. et al. Longitudinal lipidomic signatures of all-cause and CVD mortality in American Indians: findings from the Strong Heart Study. GeroScience 45, 2669–2687 (2023). https://doi.org/10.1007/s11357-023-00793-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00793-7

Keywords

Navigation