Skip to main content
Log in

Evidence of non-DDD pathway in the anaerobic degradation of DDT in tropical soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

DDT transformation to DDD in soil is the most commonly reported pathway under anaerobic conditions. A few instances of DDT conversion to products other than DDD/DDE have been reported under aerobic conditions and hardly any under anaerobic conditions. In particular, few reports exist on the anaerobic degradation of DDT in African tropical soils, despite DDT contamination arising from obsolete pesticide stockpiles in the continent as well as new contamination from DDT use for mosquito and tsetse fly control. Moreover, the development of possible remediation strategies for contaminated sites demands adequate understanding of different soil processes and their effect on DDT persistence, hence necessitating the study. The aim of this work was to study the effect of simulated anaerobic conditions and slow-release carbon sources (compost) on the dissipation of DDT in two tropical clay soils (paddy soil and field soil) amenable to periodic flooding. The results showed faster DDT dissipation in the field soil but higher metabolite formation in the paddy soil. To explain this paradox, the levels of dissolved organic carbon and carbon mineralization (CH4 and CO2) were correlated with p,p-DDT and p,p-DDD concentrations. It was concluded that DDT underwent reductive degradation (DDD pathway) in the paddy soil and both reductive (DDD pathway) and oxidative degradation (non-DDD pathway) in the field soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abongo DA, Wandiga SO, Jumba IO, Van den Brink P, Nazariwo BB, Madadi VO, Wafula GA, Kylin H, Nkedi-Kizza P (2015) Organochlorine pesticide residue levels in soil from the Nyando River Catchment, Kenya. Afr J Phys Sci 2(1):18–32

    Google Scholar 

  • Aislabie JM, Richards NK, Boul HL (1997) Microbial degradation of DDT and its residues - a review. N Z J Agric Res 40:269–282

    Article  CAS  Google Scholar 

  • Albone ES, Eglinton G, Evans NC, Rhead MM (1972). Formation of bis(p-Chlorophenyl)-acetonitrile (p, p′-DDCN) from p, p′-DDT in Anaerobic Sewage Sludge. Nature 240(5381):420–421

  • Baczynski T (2012) Influence of process parameters on anaerobic biodegradation of DDT in contaminated soil preliminary lab-scale study. Part I. Surfactant and initial contamination level. Environ Prot Eng 38(4):113–124

    CAS  Google Scholar 

  • Baczynski TP, Pleissner D, Krylow M (2012) Bioremediation of chlorinated pesticides in field contaminated soils and suitability of Tenax solid phase extraction as a predictor of its effectiveness. Clean Soil Air Water 40:864–869

    Article  CAS  Google Scholar 

  • Boul ML, Garnham ML, Hucker D, Baird D, Aislabie J (1994) Influence of agricultural practices on the levels of DDT and its residues in soil. Environ Sci Technol 28:1397–1402

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH, Lovley DR (1998) Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl Environ Microbiol 64:3102–3105

    CAS  Google Scholar 

  • Corona-Cruz A, Gold-Bouchot G, Gutierrez-Rojas M, Monroy-Hermosillo O, Favela E (1999) Anaerobic-aerobic biodegradation of DDT (dichlorodiphenyl trichloroethane) in soils. Bull Environ Contam Toxicol 63:219–225

    Article  CAS  Google Scholar 

  • Cutright TJ, Erdem Z (2012) Overview of the bioremediation and the degradation pathways of DDT. J Adnan Menderes Univ Agric Fac 9:39–45

    Google Scholar 

  • Fang H, Cai L, Yang Y, Ju F, Li X-D, Yu Y, Zhang T (2014) Metagenomic analysis reveals potential biodegradation pathways of persistent pesticides in freshwater and marine sediments. Sci Total Environ 470–471:983–992

    Article  CAS  Google Scholar 

  • Field J (2004) The role of humic substances in the anaerobic degradation of chlorinated solvents. Euro Chlor workshop on soil chlorine chemistry: workshop proceedings. www.eurochlor.org. Accessed in August 2018

  • Foght J, April T, Biggar K, Aislabie J (2001) Bioremediation of DDT: a review. Bioremediat J 5(3):225–246

    Article  CAS  Google Scholar 

  • Inglett PW, Reddy KR, Constanje R (2005) Anaerobic soils. In: Hillel D (ed) Encyclopaedia of soils in the environment. Elsevier Ltd., ISBN: 978-0-12-348530-4, p 72, 78

  • Jensen S, Göthe R, Kindstedt MO (1972). Bis-(p-Chlorophenyl)-Acetonitrile (DDCN), a new DDT derivative formed in anaerobic digested sewage sludge and lake Sediment. Nature 240(5381):421-422

  • Jin X, Wang F, Gu C, Yang X, Kengara FO, Bian Y, Song Y, Jiang X (2015) The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions. Chemosphere 138:18–24

    Article  CAS  Google Scholar 

  • Kamanavalli CM, Ninnekar HZ (2004) Biodegradation of DDT by a Pseudomonas species. Curr Microbiol 48:10–13. https://doi.org/10.1007/s00284-003-4053-1

    Article  CAS  Google Scholar 

  • Kantachote D, Singleton J, Naidu R, McClure N, Megharaj M (2004) Sodium application enhances DDT transformation in a long-term contaminated soil. Water Air Soil Pollut 154:115–124

    Article  CAS  Google Scholar 

  • Keller JK, Weisenhorn PBJ, Megonigal P (2009) Humic acids as electron acceptors in wetland decomposition. Soil Biol Biochem 41:1518–1522

    Article  CAS  Google Scholar 

  • Kengara FO (2010) Enhancement of degradation of DDT and HCB in tropical clay soils in model experiments. PhD thesis, Technische Universitaet Muenchen Library, XXIII, 179, XIV Bl

  • Kengara FO, Schramm K-W, Doerfler U, Munch JC, Henkelman B, Welzl G, Silke B, Hense B, Schroll R (2010) Degradation capacity of a 1,2,4-trichlorobenzene mineralizing microbial community for traces of organochlorine pesticides. Sci Total Environ 408:3359–3366

    Article  CAS  Google Scholar 

  • Kengara FO, Doerfler U, Welzl G, Ruth B, Munch JC, Schroll R (2013) Enhanced degradation of 14C-HCB in two tropical clay soils using multiple anaerobic-aerobic cycles. Environ Pollut 173:168–175

    Article  CAS  Google Scholar 

  • Khwaja MA (2008) POPs hot spot soil contamination due to a demolished dichlorodiphenyltrichloroethane (persistent organic pollutant) factory, Nowshera, NWFP, Pakistan. Ann N Y Acad Sci 1140:113–120

    Article  CAS  Google Scholar 

  • Kihampa C, Ram Mato R (2009) Distribution of pesticide residues in soil due to point source pollution at old Korogwe, Tanzania. Int J Biol Chem Sci 3(3):422–430

    Google Scholar 

  • Loftfield N, Brumme R, Beese F (1992) Automated monitoring of nitrous oxide and carbon dioxide flux from forest soils. Soil Sci Soc Am 56:1147–1150

    Article  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2000) Brock biology of microorganisms, 9th edn. Southern Illinois University Carbondale: Prentice Hall International, Inc., pp 165–167

  • Muendo BM, Lalah JO, Getenga ZM (2012) Behaviour of pesticide residues in agricultural soil and adjacent river Kuywa sediment and water samples from Nzoia sugarcane belt in Kenya. Environmentalist 32:433–444

    Article  Google Scholar 

  • Mwangi K, Boga HI, Muigai A, Kiiyukia C, Tsanuo MK (2010) Degradation of dichlorodiphenyltrichloroethane (DDT) by bacterial isolate form cultivated and uncultivated soil. Afr J Bioremediat Microbiol Res 4:185–196

    CAS  Google Scholar 

  • Pan X, Lin D, Zheng Y, Zhang Q, Yin Y, Cai L, Fang H, Yu Y (2016) Biodegradation of DDT by Stenotrophomonas sp. DDT-1: characterization and genome functional analysis. Sci Rep 6:21332. https://doi.org/10.1038/srep21332

    Article  CAS  Google Scholar 

  • Pannapa P, Bajaree J, Pattra S (2016) Isolation, identification and analysis of DDT-degrading bacteria for agriculture area improvements. J Food Agric Environ 14(1):131–136

    Google Scholar 

  • Perlinger JA, Angst W, Schwarzenbach RP (1996) Kinetics of the reduction of hexachloroethane by juglone in solutions containing hydrogen. Environ Sci Technol 30:3408–3417

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010) Application of mushroom waste medium from contaminated soil for bioremediation of DDT contaminated soil. Int Biodeterior Biodegrad 64:397–402

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Takagi K, Kondo R (2011) Bioremediation of DDT contaminated soil using brown-rot fungi. Int Biodeterior Biodegrad 65:691–695

    Article  CAS  Google Scholar 

  • Racke KD, Skidmore MW, Hamilton DJ, Unsworth JB, Miyamoto J, Cohen SZ (1997) Pesticide fate in tropical soils (technical report). Pure Appl Chem 69:1349–1371

    Article  CAS  Google Scholar 

  • Schulze T, Wetterauer B, Schwarzbauer J, Hollert H, Braunbeck T, Ricking M (2003) UWSF—Z. Umweltchem. Ökotox 15(2):71

    Article  CAS  Google Scholar 

  • Singh DK (2007) Biodegradation and bioremediation of pesticides in soil: concept, method and recent developments. Indian J Microbiol 48:35–40

    Article  Google Scholar 

  • Stockholm Convention (2018) The POPs. http://chm.pops.int/TheConvention/ThePOPs/tabid/673/Default.aspx. Accessed in April 2018

  • Sudharshan S, Naidu R, Mallavarapu M, Bolan N (2012) DDT remediation in contaminated soils: a review of recent studies. Biodegradation 23:851–863

    Article  CAS  Google Scholar 

  • Sun M, Ye M, Kengara FO, Teng Y, Hu F, Li H, Jiang X (2014) Response surface methodology to understand the anaerobic biodegradation of organochlorine pesticides (OCPs) in contaminated soil—significance of nitrate concentration and bioaccessibility. J Soils Sediments 14(9):1537–1548

    Article  CAS  Google Scholar 

  • Thomas JE, Gohil H (2011) Microcosm studies on the degradation of o,p-DDT and p,p-DDT, DDE and DDD in a muck soil. World J Microbiol Biotechnol 27:619–625

    Article  CAS  Google Scholar 

  • Van den Berg H (2009) Global status of DDT and its alternatives for use in vector control to prevent disease. Environ Health Perspect 17:1656–1663

    Article  Google Scholar 

  • Villa RD, Pupo Nogueira RFP (2006) Oxidation of p,p-DDT and p,p-DDE in highly and long-term contaminated soil using Fenton reaction in a slurry system. Sci Total Environ 371(1–3):11–18

    Article  CAS  Google Scholar 

  • Wandiga SO (2001). Use and distribution of organochlorine pesticides. The future in Africa. Pure Appl Chem 73(7):1147–1155

  • WHO—World Health Organization (2007) The use of DDT in malaria vector control: WHO position statement, Global Malaria Programme. http://apps.who.int/malaria/ddtandmalariavectorcontrol.html. Accessed ain April 2018

  • World Bank (2013) Obsolete pesticide stockpiles. An unwanted legacy of the African landscape. http://www.worldbank.org/en/news/feature/2013/08/05/obsolete-pesticide-stockpiles-an-unwanted-legacy-of-the-african-landscape. Accessed in September 2017

  • Yao F, Jiang X, Yu G, Wang F, Bian Y (2006) Evaluation of accelerated dechlorination of p,p′-DDT in acidic paddy soil. Chemosphere 64:628–633

    Article  CAS  Google Scholar 

  • Ye M, Sun M, Zongtang L, Ni N, Chen Y, Gu C, Kengara FO, Li H, Jiang X (2014a) Evaluation of enhanced soil washing process and phytoremediation with maize oil, carboxymethyl-β-cyclodextrin, and vetiver grass for the recovery of organochlorine pesticides and heavy metals from a pesticide factory site. J Environ Manag 141:161–168

    Article  CAS  Google Scholar 

  • Ye M, Sun M, Hu F, Kengara FO, Jiang X, Luo Y, Yang X (2014b) Remediation of organochlorine pesticides (OCPs) contaminated site by successive methyl-β-cyclodextrin (MCD) and sunflower oil enhanced soil washing—Portulaca oleracea L. cultivation. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-014-2703-4

  • Ye M, Sun M, Ni N, Chen Y, Liu Z, Gu C, Bian Y, Hu F, Li H, Kengara FO, Jiang X (2014c) Role of cosubstrate and bioaccessibility played in the enhanced anaerobic biodegradation of organochlorine pesticides (OCPs) in a paddy soil by nitrate and methyl-β-cyclodextrin amendments. Chemosphere 105:119–125

    Article  CAS  Google Scholar 

  • You G, Sayles GD, Kupferle MJ, Kim IS, Bishop PL (1996) Anaerobic DDT biotransformation: enhancement by application of subsurfactants and low oxidation reduction potential. Chemosphere 32(11):2269–2284

    Article  CAS  Google Scholar 

  • Yu HY, Bao LJ, Liang Y, Zeng EY (2011) Field validation of anaerobic degradation pathways for dichlorodiphenyltrichloroethane (DDT) and 13 metabolites in marine sediment cores from China. Environ Sci Technol 45(12):5245–5252

    Article  CAS  Google Scholar 

  • Zhao Y, Yi X, Li M, Liu L, Ma W (2010) Biodegradation kinetics of DDT in soil under different environmental conditions by laccase extract from white rot fungi. Chin J Chem Eng 18:486–496

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful to the Helmholtz Zentrum München for the consumables and facilities that were utilized in the study, the DAAD for the scholarship granted to facilitate the first author’s stay in Germany, the International Foundation for Science (IFS) for grant C/5248-1, and the National Council for Science and Technology (NCST) for grant NCST/ST&I/RCD/2ND CALL/POST DOC/039, both of which provided funds for collection of soil samples and part of the work done in Kenya.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fredrick Orori Kengara or Reiner Schroll.

Additional information

Responsible editor: Zhihong Xu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kengara, F.O., Doerfler, U., Welzl, G. et al. Evidence of non-DDD pathway in the anaerobic degradation of DDT in tropical soil. Environ Sci Pollut Res 26, 8779–8788 (2019). https://doi.org/10.1007/s11356-019-04331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04331-x

Keywords

Navigation