Skip to main content
Log in

A 3.1–10.6 GHz UWB LNA Based on Self Cascode Technique for Improved Bandwidth and High Gain

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this work, we present a self cascode based ultra-wide band (UWB) low noise amplifier (LNA) with improved bandwidth and gain for 3.1–10.6 GHz wireless applications. The self cascode (SC) or split-length compensation technique is employed to improve the bandwidth and gain of the proposed LNA. The improvement in the bandwidth of SC based structure is around 1.22 GHz as compared to simple one. The significant enhancement in the characteristics of the introduced circuit is found without extra passive components. The SC based CS–CG structure in the proposed LNA uses the same DC current for operating first stage transistors. In the designed UWB LNA, a common source (CS) stage is used in the second stage to enhance the overall gain in the high frequency regime. With a standard 90 nm CMOS technology, the presented UWB LNA results in a gain \(\hbox {S}_{21}\) of \(20.10 \pm 1.65\,\hbox {dB}\) across the 3.1–10.6 GHz frequency range, and dissipating 11.52 mW power from a 1 V supply voltage. However, input reflection, \(\hbox {S}_{11}\), lies below \(-\,10\) dB from 4.9–9.1 GHz frequency. Moreover, the output reflection (\(\hbox {S}_{22}\)) and reverse isolation (\(\hbox {S}_{12}\)), is below \(-\,10\) and \(-\,48\) dB, respectively for the ultra-wide band region. Apart from this, the minimum noise figure (\(\hbox {NF}_{min}\)) value of the proposed UWB LNA exists in the range of 2.1–3 dB for 3.1–10.6 GHz frequency range with a a small variation of \(\pm \,0.45\,\hbox {dB}\) in its \(\hbox {NF}_{min}\) characteristics. Linearity of the designed LNA is analysed in terms of third order input intercept point (IIP3) whose value is \(-\,4.22\) dBm, when a two tone signal is applied at 6 GHz with a spacing of 10 MHz. The other important benefits of the proposed circuit are its group-delay variation and gain variation of \(\pm \,115\,\hbox {ps}\) and \(\pm \,1.65\,\hbox {dB}\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Slimane, A., Trabelsi, M., & Belaroussi, M. T. (2011). A 0.9-V, 7-mW UWB LNA for 3.1–10.6 GHz wireless applications in \(0.18\,\upmu \text{ m }\) CMOS technology. Microelectronics Journal, 42(11), 1263–1268.

    Article  Google Scholar 

  2. Toofan, S., Rahmati, A. R., Abrishamifar, A., & Roientan Lahiji, G. (2008). Low power and high gain current reuse LNA with modified input matching and inter-stage inductors. Microelectronics Journal, 39(12), 1534–1537.

    Article  Google Scholar 

  3. Rastegar, H., Saryazdi, S., & Hakimi, A. (2012). Wideband and multiband CMOS LNAs: State-of-the-art and future prospects. Microelectronics Journal, 44(9), 774–786.

    Google Scholar 

  4. Nakhlestani, A., et al. (2012). A novel configuration for UWB LNA suitable for low-power and low-voltage applications. Microelectronics Journal, 43(7), 444–451.

    Article  Google Scholar 

  5. Shim, J., Yang, T., & Jeong, J. (2013). Design of low power CMOS ultra wide band low noise amplifier using noise canceling technique. Microelectronics Journal, 44(9), 821–826.

    Article  Google Scholar 

  6. Sapone, G., & Palmisano, G. (2011). A 3–10 GHz low-power CMOS low-noise amplifier for ultra-wideband communication. IEEE Transactions on Microwave Theory Techniques, 59(3), 678–686.

    Article  Google Scholar 

  7. Lu, Y., Yeo, K. S., Cabuk, A., Ma, J., Do, M. A., & Lu, Z. (2006). A novel CMOS low noise amplifier design for 3.1–10.6 GHz ultra-wide-band wireless receiver. IEEE Transactions on Circuits System I: Regular Papers, 53(8), 1683–1692.

    Article  Google Scholar 

  8. Yang, H. Y., Lin, Y. S., & Chen, C. C. (2008). 2.5 dB NF 3.1–10.6 GHz CMOS UWB LNA with small group-delay variation. Electronics Letters, 44(8), 528–529.

    Article  Google Scholar 

  9. Chen, C. C., & Wang, Y. C. (2013). 3.1–10.6 GHz ultra-wideband LNA design using dual-resonant broadband matching technique. AEU-International Journal of Electronics and Communications, 67(6), 500–503.

    Article  Google Scholar 

  10. Lee, J. H., Chen, C. C., & Lin, Y. S. (2007). \(0.18\,\upmu \text{ m }\) 3.1–10.6 GHz CMOS UWB LNA with \(11.4 \pm 0.4\,\text{ dB }\) gain and \(100.7 \pm 17.4\,\text{ ps }\) group-delay. Electronics Letters, 43(24), 1359–1360.

    Article  Google Scholar 

  11. Rastegar, H., Saryazdi, S., & Hakimi, A. (2013). A low power and high linearity UWB low noise amplifier (LNA) for 3.1–10.6 GHz wireless applications in \(0.13\,\upmu \text{ m }\) CMOS process. Microelectronics Journal, 44(3), 201–209.

    Article  Google Scholar 

  12. Wan, Q., Wang, Q., & Zheng, Z. (2015). Design and analysis of a 3.1–10.6 GHz UWB low noise amplifier with forward body bias technique. AEU-International Journal of Electronics and Communications, 69, 119–125.

    Article  Google Scholar 

  13. Reiha, M.-T., & Long, J.-R. (2007). A 1.2 V reactive feedback 3.1–10.6 GHz low-noise amplifier in \(0.13\,\upmu \text{ m }\) CMOS. IEEE Journal of Solid State Circuits, 42(5), 1023–1033.

    Article  Google Scholar 

  14. Chang, J.-F., & Lin, Y.-S. (2009). 3–10 GHz low-power, low-noise CMOS distributed amplifier using splitting-load inductive peaking and noise-suppression techniques. Electronics Letters, 45(20), 78–81.

    Article  Google Scholar 

  15. Yan, S., & Sanchez-Sinencio, E. (2000). Low voltage analog circuit design techniques: A tutorial. IEICE Transactions on Analog Inegrated Circuits and Systems, 2, 1–17.

    Google Scholar 

  16. Galup-Montoro, C., Schneider, M. C., & Loss, I. J. B. (1994). Series-parallel association of fet’s for high gain and high frequency applications. IEEE Journal of Solid-State Circuits, 29(9), 1094–1101.

    Article  Google Scholar 

  17. Rajput, S. S., & Jamuar, S. S. (2002). Low voltage analog circuit design techniques. Circuits and Systems Magazine, 2(1), 24–42.

    Article  Google Scholar 

  18. Saxena, V., Balagopal, S., & Baker, R. J. (2011). Systematic design of three-stage op-amps using split-length compensation. In Proceedings of the IEEE 54th midwest symposium on circuits and systems (MWSCAS) (pp. 1–4).

  19. Saxena, V., & Baker, R. J. (2008). Compensation of CMOS Op-amps using split-length transistors. In Proceedings of the IEEE 51st midwest symposium on circuits and systems (MWSCAS) (pp. 109–112).

  20. Pepe, D., & Zito, D. (2009). 22.7-dB gain- 19.7-dBm \(\text{ ICP }_{1{\rm dB}}\) UWB CMOS LNA. IEEE Transactions on Circuits and Systems II, Express Briefs, 56(9), 689–693.

    Article  Google Scholar 

  21. Brederlow, R., Weber, W., Sauerer, J., Donnay, S., Wambacq, P., & Vertregt, M. (2001). A mixed-signal design roadmap. IEEE Design and Test of Computers, 18(6), 34–36.

    Article  Google Scholar 

  22. Hsu, M.-T., Chang, Y.-C., & Huang, Y.-Z. (2013). Design of low power UWB LNA based on common source topology with current-reused technique. Microelectronics Journal, 44(12), 1223–1230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Gawande, T. & Kondekar, P.N. A 3.1–10.6 GHz UWB LNA Based on Self Cascode Technique for Improved Bandwidth and High Gain. Wireless Pers Commun 101, 1867–1882 (2018). https://doi.org/10.1007/s11277-018-5795-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5795-1

Keywords

Navigation