Skip to main content
Log in

Electrochemical Sensor for Antihistamine Drug Detection in River Water Using MoO3 Nanorods

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Insufficient research has been conducted on the comprehensive detection of cetirizine dihydrochloride (CDH) in water bodies, while also overlooking the exploration of response time. Addressing these research gaps is crucial to enhance our understanding and detection capabilities of CDH in water. Consequently, the objective of this study was to develop an electrochemical sensor utilizing molybdenum trioxide (MoO3) nanointerfaced glassy carbon working electrode for the sensitive detection of CDH in water samples. The characterization of the MoO3 nanorods was conducted through morphological analysis using scanning electron microscopy, structural examination employing X-ray diffraction, and elemental analysis utilizing X-ray photoelectron spectroscopy. The integration of the MoO3 nanointerfaced sensor resulted in an enhanced electrochemical response during cyclic voltammetry, amperometry, and differential pulse voltammetry, attributed to its catalytic activity, electron transfer capability, and conductive nano-bioenvironment. The sensor demonstrated a detection potential of 0.927 V (vs Ag/AgCl) within a rapid response time of less than 50 s. Furthermore, the linear range of detection spanned from 10 to 70 µM, with a limit of detection as low as 194 ± 1.25 nM. The remarkable anti-interference properties of the MoO3 material further highlight the applicability of the fabricated sensor in real sample analysis. Successful validation of the developed sensor was achieved through the detection of CDH in water samples obtained from the Kaveri River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data in this manuscript is available from the corresponding author and can be provided on reasonable request.

References

  • Afkhami, A., Bagheri, H., Shirzadmehr, A., Khoshsafar, H., & Hashemi, P. (2012). A potentiometric sensor for Cd2+ based on carbon nanotube paste electrode constructed from room temperature ionic liquid, ionophore and silica nanoparticles. Electroanalysis, 24(11), 2176–2185. https://doi.org/10.1002/elan.201200246

    Article  CAS  Google Scholar 

  • Al-harbi, E. A. (2021). Fabrication and application of bismuth-film modified glassy carbon electrode as sensor for highly sensitive determination of cetirizine dihydrochloride in pharmaceutical products and water samples. International Journal of Electrochemical Science, 16(10), 211036. https://doi.org/10.20964/2021.10.37

    Article  CAS  Google Scholar 

  • Almeida, Â., Freitas, R., Calisto, V., Esteves, V. I., Schneider, R. J., Soares, A. M. V. M., et al. (2018). Effects of carbamazepine and cetirizine under an ocean acidification scenario on the biochemical and transcriptome responses of the clam Ruditapes philippinarum. Environmental Pollution, 235, 857–868. https://doi.org/10.1016/j.envpol.2017.12.121

    Article  CAS  Google Scholar 

  • Bahlmann, A., Carvalho, J. J., Weller, M. G., Panne, U., & Schneider, R. J. (2012). Immunoassays as high-throughput tools: Monitoring spatial and temporal variations of carbamazepine, caffeine and cetirizine in surface and wastewaters. Chemosphere, 89(11), 1278–1286. https://doi.org/10.1016/j.chemosphere.2012.05.020

    Article  CAS  Google Scholar 

  • Bai, S., Chen, S., Chen, L., Zhang, K., Luo, R., Li, D., & Liu, C. C. (2012). Ultrasonic synthesis of MoO3 nanorods and their gas sensing properties. Sensors and Actuators B: Chemical, 174, 51–58. https://doi.org/10.1016/j.snb.2012.08.015

    Article  CAS  Google Scholar 

  • Balasubramanian, P., Annalakshmi, M., Chen, S.-M., & Chen, T.-W. (2019). Sonochemical synthesis of molybdenum oxide (MoO3) microspheres anchored graphitic carbon nitride (g-C3N4) ultrathin sheets for enhanced electrochemical sensing of Furazolidone. Ultrasonics Sonochemistry, 50, 96–104. https://doi.org/10.1016/j.ultsonch.2018.09.006

    Article  CAS  Google Scholar 

  • Baltes, E., Coupez, R., Brouwers, L., & Gobert, J. (1988). Gas chromatographic method for the determination of cetirizine in plasma. Journal of Chromatography, 430(1), 149–155. https://doi.org/10.1016/s0378-4347(00)83145-x

    Article  CAS  Google Scholar 

  • Borowska, E., Bourgin, M., Hollender, J., Kienle, C., McArdell, C. S., & von Gunten, U. (2016). Oxidation of cetirizine, fexofenadine and hydrochlorothiazide during ozonation: Kinetics and formation of transformation products. Water Research, 94, 350–362. https://doi.org/10.1016/j.watres.2016.02.020

    Article  CAS  Google Scholar 

  • Chithambararaj, A., Sanjini, N. S., Bose, A. C., & Velmathi, S. (2013). Flower-like hierarchical h-MoO3: New findings of efficient visible light driven nano photocatalyst for methylene blue degradation. Catalysis Science & Technology, 3(5), 1405–1414. https://doi.org/10.1039/C3CY20764A

    Article  CAS  Google Scholar 

  • Culková, E., Lukáčová-Chomisteková, Z., Bellová, R., Melicherčíková, D., Durdiak, J., Timko, J., et al. (2018). Boron-doped diamond film electrode as voltammetric sensor for cetirizine. International Journal of Electrochemical Science, 13(7), 6358–6372. https://doi.org/10.20964/2018.07.42

    Article  CAS  Google Scholar 

  • Fazio, E., Spadaro, S., Bonsignore, M., Lavanya, N., Sekar, C., Leonardi, S. G., et al. (2018). Molybdenum oxide nanoparticles for the sensitive and selective detection of dopamine. Journal of Electroanalytical Chemistry, 814, 91–96. https://doi.org/10.1016/j.jelechem.2018.02.051

    Article  CAS  Google Scholar 

  • Gill, A. A. S., Singh, S., Nate, Z., Pawar, C., Chauhan, R., Thapliyal, N. B., et al. (2021). One-pot synthesis of β-cyclodextrin modified silver nanoparticles for highly sensitive detection of ciprofloxacin. Journal of Pharmaceutical and Biomedical Analysis, 203, 114219. https://doi.org/10.1016/j.jpba.2021.114219

    Article  CAS  Google Scholar 

  • Gowda, B. G., Melwanki, M. B., & Seetharamappa, J. (2001). Extractive spectrophotometric determination of ceterizine HCl in pharmaceutical preparations. Journal of Pharmaceutical and Biomedical Analysis, 25(5), 1021–1026. https://doi.org/10.1016/S0731-7085(01)00395-8

    Article  CAS  Google Scholar 

  • Güngör, S. D. (2004). Electrooxidation of cetirizine dihydrochloride with a glassy carbon electrode. Die Pharmazie, 59(12), 929–933.

    Google Scholar 

  • Haghighi, S., Shapouri, M. R., Amoli-Diva, M., Pourghazi, K., & Afruzi, H. (2013). HPTLC-densitometric determination of cetirizine and montelukast analysis in combined tablet dosage forms. Iranian Journal of Pharmaceutical Research: IJPR, 12(2), 303–309.

    CAS  Google Scholar 

  • Iqbal, M., Ahmad, M. Z., Qureshi, K., Bhatti, I. A., Alwadai, N., & Kusuma, H. S. (2021). Template free zinc vanadate flower synthesis, characterization and efficiency for cetirizine-dihydrochloride degradation under UV light irradiation. Materials Chemistry and Physics, 272, 124968. https://doi.org/10.1016/j.matchemphys.2021.124968

    Article  CAS  Google Scholar 

  • Jaber, A. M. Y., Al Sherife, H. A., Al Omari, M. M., & Badwan, A. A. (2004). Determination of cetirizine dihydrochloride, related impurities and preservatives in oral solution and tablet dosage forms using HPLC. Journal of Pharmaceutical and Biomedical Analysis, 36(2), 341–350. https://doi.org/10.1016/j.jpba.2004.07.002

    Article  CAS  Google Scholar 

  • Kalambate, P. K., & Srivastava, A. K. (2016). Simultaneous voltammetric determination of paracetamol, cetirizine and phenylephrine using a multiwalled carbon nanotube-platinum nanoparticles nanocomposite modified carbon paste electrode. Sensors and Actuators B: Chemical, 233, 237–248. https://doi.org/10.1016/j.snb.2016.04.063

    Article  CAS  Google Scholar 

  • Kamble, B. B., Ajalkar, B. D., Tawade, A. K., Sharma, K. K., Mali, S. S., Hong, C. K., et al. (2021). Ionic liquid assisted synthesis of h-MoO3 hollow microrods and their application for electrochemical sensing of imidacloprid pesticide in vegetables. Journal of Molecular Liquids, 324, 115119. https://doi.org/10.1016/j.molliq.2020.115119

    Article  CAS  Google Scholar 

  • Kanoun, O., Lazarević-Pašti, T., Pašti, I., Nasraoui, S., Talbi, M., Brahem, A., et al. (2021). A review of nanocomposite-modified electrochemical sensors for water quality monitoring. Sensors (Basel, Switzerland), 21(12), 4131. https://doi.org/10.3390/s21124131

    Article  CAS  Google Scholar 

  • Karakaya, S., & Dilgin, D. G. (2019). Low-cost determination of cetirizine by square wave voltammetry in a disposable electrode. Monatshefte Fuer Chemie, 150(6), 1003–1010. https://doi.org/10.1007/s00706-019-2384-2

    Article  CAS  Google Scholar 

  • Karimian, N., Fakhri, H., Amidi, S., Hajian, A., Arduini, F., & Bagheri, H. (2019). A novel sensing layer based on metal–organic framework UiO-66 modified with TiO2–graphene oxide: Application to rapid, sensitive and simultaneous determination of paraoxon and chlorpyrifos. New Journal of Chemistry, 43(6), 2600–2609. https://doi.org/10.1039/C8NJ06208K

    Article  CAS  Google Scholar 

  • Karimian, N., Hashemi, P., Khanmohammadi, A., Afkhami, A., & Bagheri, H. (2020). The principles and recent applications of bioelectrocatalysis. Analytical and Bioanalytical Chemistry Research, 7(3), 281–301. https://doi.org/10.22036/abcr.2020.206676.1423

    Article  CAS  Google Scholar 

  • Khanmohammadi, A., Jalili Ghazizadeh, A., Hashemi, P., Afkhami, A., Arduini, F., & Bagheri, H. (2020). An overview to electrochemical biosensors and sensors for the detection of environmental contaminants. Journal of the Iranian Chemical Society, 17(10), 2429–2447. https://doi.org/10.1007/s13738-020-01940-z

    Article  CAS  Google Scholar 

  • Kulkarni, A. K., Tamboli, M. S., Nadargi, D. Y., Sethi, Y. A., Suryavanshi, S. S., Ghule, A. V., & Kale, B. B. (2020). Bismuth molybdate (α-Bi2Mo3O12) nanoplates via facile hydrothermal and its gas sensing study. Journal of Solid State Chemistry, 281(November), 121043. https://doi.org/10.1016/j.jssc.2019.121043

    Article  CAS  Google Scholar 

  • Liu, Y., & Xu, L. (2007). Electrochemical sensor for tryptophan determination based on copper-cobalt hexacyanoferrate film modified graphite electrode. Sensors, 7(10), 2446–2457. https://doi.org/10.3390/s7102446

    Article  CAS  Google Scholar 

  • Liu, Y., Yang, S., Lu, Y., Podval’naya, N. V., Chen, W., & Zakharova, G. S. (2015). Hydrothermal synthesis of h-MoO3 microrods and their gas sensing properties to ethanol. Applied Surface Science, 359(114), 119. https://doi.org/10.1016/j.apsusc.2015.10.071

    Article  CAS  Google Scholar 

  • Lou, X. W., & Zeng, H. C. (2002). Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate. Chemistry of Materials, 14(11), 4781–4789. https://doi.org/10.1021/cm0206237

    Article  CAS  Google Scholar 

  • Pandya, K. K., Bangaru, R. A., Gandhi, T. P., Modi, I. A., Modi, R. I., & Chakravarthy, B. K. (1996). High-performance thin-layer chromatography for the determination of cetirizine in human plasma and its use in pharmacokinetic studies. The Journal of Pharmacy and Pharmacology, 48(5), 510–513. https://doi.org/10.1111/j.2042-7158.1996.tb05963.x

    Article  CAS  Google Scholar 

  • Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, C. U., & Mohan, D. (2019). Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chemical Reviews, 119(6), 3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299

    Article  CAS  Google Scholar 

  • Patil, R. H., Hegde, R. N., & Nandibewoor, S. T. (2011). Electro-oxidation and determination of antihistamine drug, cetirizine dihydrochloride at glassy carbon electrode modified with multi-walled carbon nanotubes. Colloids and Surfaces B: Biointerfaces, 83(1), 133–138. https://doi.org/10.1016/j.colsurfb.2010.11.008

    Article  CAS  Google Scholar 

  • Pourghazi, K., Khoshhesab, Z. M., Golpayeganizadeh, A., Shapouri, M. R., & Afrouzi, H. (2011). Spectrophotometric determination of cetirizine and montelukast in prepared formulations. International Journal of Pharmacy and Pharmaceutical Sciences, 3(SUPPL. 2), 128–130.

    CAS  Google Scholar 

  • Pushpanjali, P. A., Manjunatha, J. G., Hareesha, N., D’Souza, E. S., Charithra, M. M., & Prinith, N. S. (2021a). Voltammetric analysis of antihistamine drug cetirizine and paracetamol at poly(L-Leucine) layered carbon nanotube paste electrode. Surfaces and Interfaces, 24, 101154. https://doi.org/10.1016/j.surfin.2021.101154

    Article  CAS  Google Scholar 

  • Pushpanjali, P. A., Manjunatha, J. G., Sreeharsha, N., Asdaq, S. M. B., & Anwer, M. K. (2021b). A highly responsive voltammetric methodology for the sensing of antihistamine drug cetirizine on the surface of cetrimonium bromide immobilized multi-walled carbon nanotube electrode. Journal of Materials Science: Materials in Electronics, 32(17), 22668–22679. https://doi.org/10.1007/s10854-021-06751-3

    Article  CAS  Google Scholar 

  • Rizk, N. M. H., Abbas, S. S., El-Sayed, F. A., & Abo-Bakr, A. (2009). Novel ionophore for the potentiometric determination of cetirizine hydrochloride in pharmaceutical formulations and human urine. International Journal of Electrochemical Science, 4(3), 396–406.

    Article  CAS  Google Scholar 

  • Saha, A., Paul, A., Srivastava, D. N., & Panda, A. B. (2018). Porous carbon incorporated Β-Mo2C hollow sphere: An efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 43(47), 21655–21664. https://doi.org/10.1016/j.ijhydene.2018.04.051

    Article  CAS  Google Scholar 

  • Shaheen, I., & Ahmad, K. S. (2021). Modified sol gel synthesis of MoO3 NPs using organic template: Synthesis, characterization and electrochemical investigations. Journal of Sol-Gel Science and Technology, 97(1), 178–190. https://doi.org/10.1007/s10971-020-05398-6

    Article  CAS  Google Scholar 

  • Shiri, S., Pajouheshpoor, N., Khoshsafar, H., Amidi, S., & Bagheri, H. (2017). An electrochemical sensor for the simultaneous determination of rifampicin and isoniazid using a C-dots@CuFe2O4 nanocomposite modified carbon paste electrode. New Journal of Chemistry, 41(24), 15564–15573. https://doi.org/10.1039/C7NJ03029K

    Article  CAS  Google Scholar 

  • Subbiah, D. K., Babu, K. J., Das, A., & Rayappan, J. B. B. (2019). NiOx Nanoflower modified cotton fabric for UV filter and gas sensing applications. ACS Applied Materials & Interfaces, 11(22), 20045–20055. https://doi.org/10.1021/acsami.9b04682

    Article  CAS  Google Scholar 

  • Sutar, R. S., & Rathod, V. K. (2015). Ultrasound assisted enzyme catalyzed degradation of cetirizine dihydrochloride. Ultrasonics Sonochemistry, 24, 80–86. https://doi.org/10.1016/j.ultsonch.2014.10.016

    Article  CAS  Google Scholar 

  • Taherkhani, A., Karimi-Maleh, H., Ensafi, A. A., Beitollahi, H., Hosseini, A., Khalilzadeh, M. A., & Bagheri, H. (2012). Simultaneous determination of cysteamine and folic acid in pharmaceutical and biological samples using modified multiwall carbon nanotube paste electrode. Chinese Chemical Letters, 23(2), 237–240. https://doi.org/10.1016/j.cclet.2011.10.023

    Article  CAS  Google Scholar 

  • Teixeira, M., Almeida, Â., Calisto, V., Esteves, V. I., Schneider, R. J., Wrona, F. J., et al. (2017). Toxic effects of the antihistamine cetirizine in mussel Mytilus galloprovincialis. Water Research, 114, 316–326. https://doi.org/10.1016/j.watres.2017.02.032

    Article  CAS  Google Scholar 

  • Vernekar, P. R., Shetti, N. P., Shanbhag, M. M., Malode, S. J., Malladi, R. S., & Reddy, K. R. (2020). Novel layered structured bentonite clay-based electrodes for electrochemical sensor applications. Microchemical Journal, 159, 105441. https://doi.org/10.1016/j.microc.2020.105441

    Article  CAS  Google Scholar 

  • Wankhede, S. B., Lad, K. A., & Chitlange, S. S. (2012). Development and validation of UV-spectrophotometric methods for simultaneous estimation of cetirizine hydrochloride and phenylephrine hydrochloride in tablets. International Journal of Pharmaceutical Sciences and Drug Research, 4(3), 222–226.

    CAS  Google Scholar 

  • Zhao, B., Nakada, N., Hanamoto, S., Zhang, L., & Wong, Y. (2021). Modeling in-stream attenuation of N-nitrosodimethylamine and formaldehyde during urban river transportation based on seasonal and diurnal variation. Environmental Science and Pollution Research, 28(9), 10889–10897. https://doi.org/10.1007/s11356-020-11361-3

    Article  CAS  Google Scholar 

  • Zhao, B., Wong, Y., Ihara, M., Nakada, N., Yu, Z., Sugie, Y., et al. (2022). Characterization of nitrosamines and nitrosamine precursors as non-point source pollutants during heavy rainfall events in an urban water environment. Journal of Hazardous Materials, 424, 127552. https://doi.org/10.1016/j.jhazmat.2021.127552

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge SASTRA Deemed University, Thanjavur, for extending infrastructure support to carry out the work.

Funding

This work was supported by Department of Science & Technology, New Delhi & Technology Mission Division, New Delhi (DST/TMD/EWO/WTI/2K19/EWFH/2019/98(G)).

Author information

Authors and Affiliations

Authors

Contributions

Methodology and writing original draft preparation: Kavya Pradeepan; formal analysis and investigation: Dinesh Kumar Subbiah; review and editing: Noel Nesakumar; conceptualization, review, and editing: Gautham B Jegadeesan; resources and supervision: Arockia Jayalatha Kulandaisamy; conceptualization and supervision: John Bosco Balaguru Rayappan.

Corresponding author

Correspondence to John Bosco Balaguru Rayappan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeepan, K., Subbiah, D.K., Nesakumar, N. et al. Electrochemical Sensor for Antihistamine Drug Detection in River Water Using MoO3 Nanorods. Water Air Soil Pollut 234, 499 (2023). https://doi.org/10.1007/s11270-023-06516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06516-0

Keywords

Navigation