Skip to main content
Log in

Co-Pyrolyzed Rice Husk and Cow Bone In Situ Cd-Remediation for Corn Plant Growth. A Comprehensive Case Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The paper aims to evaluate the effectiveness of biochar prepared from the co-pyrolysis of rice husk and cow bone (RHCBC) for in situ remediation and amelioration of Cd-contaminated soil. Effects of RHCBC on Cd bioavailability in soil and Cd uptake in corn growth were investigated through cultivation experiments and pot experiments. The results showed that the addition of RHCBC in the Cd-contaminated soil achieved the increase of soil pH, CEC, and SOM, whereas the soil available Cd content was reduced by 29.08–51.06%, which was proved by the transformation of Cd from acid soluble and exchangeable state to residual state. Furthermore, the nutrient contents of soil were also increased by 82.41–230.09% for alkali-hydrolyzable N, 66.81–144.03% for available P, and 16.20–77.70% for available K, respectively, which promoted the growth of corn. Overall, it is a promising strategy to employ RHCBC for in situ remediation of Cd-contaminated soil and promotion of plant growth as efficient soil amendment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Ahmad, Z., Gao, B., Mosa, A., Yu, H. W., Yin, X. Q., Bashir, A., Ghoveisi, H., & Wang, S. S. (2018). Removal of Cu (II), Cd (II) and Pb (II) ions from aqueous solutions by biochars derived from potassium-rich biomass. Journal of Cleaner Production, 180, 437–449.

    Article  CAS  Google Scholar 

  • Ahmed, M. J., & Hameed, B. H. (2020). Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review. Journal of Cleaner Production, 265, 121762.

    Article  CAS  Google Scholar 

  • Ajmal, Z., Muhmood, A., Dong, R. J., & Wu, S. B. (2020). Probing the efficiency of magnetically modified biomass-derived biochar for effective phosphate removal. Journal of Environmental Management, 253, 109730.

    Article  CAS  Google Scholar 

  • Ali, J., Kazi, T. G., Afridi, H. I., Baig, J. A., Shah, F., & Arain, M. S. (2017). Evaluates the chemical fractions of arsenic bounded to solid matrixes of thar coalfield of Pakistan by sequential extraction method. Environmental Progress and Sustainable Energy, 36(6), 1667–1675.

    Article  CAS  Google Scholar 

  • Altintig, E., Altundag, H., Tuzen, M., & Sari, A. (2017). Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chemical Engineering Research and Design, 122, 151–163.

    Article  CAS  Google Scholar 

  • Arain, M. B., Kazi, T. G., Jamali, M. K., Afridi, H. I., Jalbani, N., Sarfraz, R. A., Baig, J. A., Kandhro, G. A., & Memon, M. A. (2008a). Time saving modified BCR sequential extraction procedure for the fraction of Cd, Cr, Cu, Ni, Pb, and Zn in sediment samples of polluted lake. Journal of Hazardous Materials, 160, 235–239.

    Article  CAS  Google Scholar 

  • Arain, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, H. I., & Baig, J. A. (2008b). Speciation of heavy metals in sediment by conventional, ultrasound and microwave assisted single extraction methods: A comparison with modified sequential extraction procedure. Journal of Hazardous Materials, 154, 998–1006.

    Article  CAS  Google Scholar 

  • Awual, M. R., Khraisheh, M., Alharthi, N. H., Luqman, M., Islam, A., Karim, M. R., Rahman, M. M., & Khaleque, M. A. (2018). Efficient detection and adsorption of cadmium (II) ions using innovative nano-composite materials. Chemical Engineering Journal, 343, 118–127.

    Article  CAS  Google Scholar 

  • Beesley, L., & Marmiroli, M. (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159(2), 474–480.

    Article  CAS  Google Scholar 

  • Cui, X. Q., Fang, S. Y., Yao, Y. Q., Li, T. Q., Ni, Q. J., Yang, X. E., & He, Z. L. (2016). Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Science of the Total Environment, 562, 517–525.

    Article  CAS  Google Scholar 

  • Fan, S. S., Tang, J., Wang, Y., Li, H., Zhang, H., Tang, J., Wang, Z., & Li, X. D. (2016). Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism. Journal of Molecular Liquids, 220, 432–441.

    Article  CAS  Google Scholar 

  • Fan, J. J., Cai, C., Chia, H. F., Reid, B. J., Coulon, F., Zhang, Y. C., & Hou, Y. W. (2020). Remediation of cadmium and lead polluted soil using thiol-modified biochar. Journal of Hazardous Materials, 388, 122037.

    Article  CAS  Google Scholar 

  • Feng, Y. A., Gong, J. L., Zeng, G. M., Niu, Q. Y., Zhang, H. Y., Niu, C. G., Deng, J. H., & Yan, M. (2010). Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chemical Engineering Journal, 162(2), 487–494.

    Article  CAS  Google Scholar 

  • Ge, J., Zhang, C., Sun, Y. C., Zhang, Q., Lv, M. W., Guo, K., & Li, J. L. (2019). Cadmium exposure triggers mitochondrial dysfunction and oxidative stress in chicken (Gallus gallus) kidney via mitochondrial UPR inhibition and Nrf2-mediated antioxidant defense activation. Science of the Total Environment, 689, 1160–1171.

    Article  CAS  Google Scholar 

  • Guo, X. Z., Zhang, L. J., Yan, L. Q., Yang, H., & Zhu, L. (2010). Preparation of silicon carbide using bamboo charcoal as carbon source. Materials Letters, 64(3), 331–333.

    Article  CAS  Google Scholar 

  • Guo, F. Y., Ding, C. F., Zhou, Z. G., Huang, G. X., & Wang, X. X. (2018). Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation. Ecotoxicology and Environmental Safety, 148, 303–310.

    Article  CAS  Google Scholar 

  • He, H. D., Tam, N. F. Y., Yao, A. J., Qiu, R. L., Li, W. C., & Ye, Z. H. (2017). Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag. Chemosphere, 189, 247–254.

    Article  CAS  Google Scholar 

  • Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., Sarfraz, R. A., & Baig, J. A. (2008). A multivariate study: Variation in uptake of trace and toxic elements by various varieties of Sorghum bicolor L. Journal of Hazardous Materials, 158(2–3), 644–651.

    Article  CAS  Google Scholar 

  • Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., Kandhro, G. A., Shah, A. Q., & Baig, J. A. (2009). Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge. Journal of Hazardous Materials, 164(2–3), 1386–1391.

    Article  CAS  Google Scholar 

  • Jiang, L., Yi, X., Xu, B., & Lai, K. R. (2020). Effect of wheat straw derived biochar on immobilization of Cd and Pb in single-and binary-metal contaminated soil. Human and Ecological Risk Assessment, 26(9), 2420–2433.

    Article  CAS  Google Scholar 

  • Kazi, T. G., Brahman, K. D., Baig, J. A., & Afridi, H. I. (2019). Bioaccumulation of arsenic and fluoride in vegetables from growing media: Health risk assessment among different age groups. Environmental Geochemistry and Health, 41(3), 1223–1234.

    Article  CAS  Google Scholar 

  • Lashari, A. A., Kazi, T. G., Baig, J. A., & Afridi, H. I. (2020). Fractionation of lead in lignite coal samples of thar coalfield, Pakistan by time-saving single-step based on BCR sequential extraction scheme. Environmental Progress and Sustainable Energy, 39(6), 13439.

    Article  Google Scholar 

  • Lehmann, J., Rilling, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota - A review. Soil Biology and Biochemistry, 43(9), 1812–1836.

    Article  CAS  Google Scholar 

  • Liang, B. Q., Lehmann, J., Sohi, S. P., Thies, J. E., O’Neill, B., Trujillo, L., Gaunt, J., Solomon, D., Grossman, J., Neves, E. G., & Luizao, F. J. (2010). Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry, 41(2), 206–213.

    Article  CAS  Google Scholar 

  • Liu, L., & Fan, S. S. (2018). Removal of cadmium in aqueous solution using wheat straw biochar: Effect of minerals and mechanism. Environmental Science and Pollution Research, 25(9), 8688–8700.

    Article  CAS  Google Scholar 

  • Liu, J., Yang, X. Y., Liu, H. H., Jia, X. P., & Bao, Y. C. (2021a). Mixed biochar obtained by the co-pyrolysis of shrimp shell with corn straw: Co-pyrolysis characteristics and its adsorption capability. Chemosphere, 282, 131116.

    Article  CAS  Google Scholar 

  • Liu, P. Y., Rao, D. A., Zou, L. Y., Teng, Y., & Yu, H. Y. (2021b). Capacity and potential mechanisms of Cd (II) adsorption from aqueous solution by blue algae-derived biochars. Science of the Total Environment, 767, 145447.

    Article  CAS  Google Scholar 

  • Long, Y. C., Jiang, J., Hu, J., Hu, X. J., Yang, Q., & Zhou, S. Q. (2019). Removal of Pb (II) from aqueous solution by hydroxyapatite/carbon composite: Preparation and adsorption behavior. Colloids and Surfaces A, 577, 471–479.

    Article  CAS  Google Scholar 

  • Ma, Y. R., Yang, X. H., Ge, C. H., & Sun, J. S. (2014). Study on activating effect available P and K through application of cotton stalk biochar. Xinjiang Agricultural Sciences (China), 51(4), 660–666.

    CAS  Google Scholar 

  • Mehmood, K., Abdulaha-Al Baquy, M., & Xu, R. K. (2018). Influence of nitrogen fertilizer forms and crop straw biochars on soil exchange properties and maize growth on an acidic Ultisol. Archives of Agronomy and Soil Science, 64(6), 834–849.

    Article  CAS  Google Scholar 

  • MLR (Ministry of Land and Resources), MEP (Ministry of Environmental Protection) in China. (2014). The results of a national soil survey. http://www.gov.cn/foot/site1/20140417/782bcb88840814ba158d01.pdf. Accessed 20 Dec 2022

  • Nowinska, K., & Adamczyk, Z. (2021). Effect of galena contained in dust from Zn-Pb metallurgical processes on environment. Environmental Earth Sciences., 80(8), 294.

    Article  CAS  Google Scholar 

  • Qiu, B. B., Tao, X. D., Wang, H., Li, W. K., Ding, X., & Chu, H. Q. (2021). Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review. Journal of Analytical and Applied Pyrolysis, 155, 105081.

    Article  CAS  Google Scholar 

  • Qureshi, A. A., Kazi, T. G., Baig, J. A., Arain, M. B., & Afridi, H. I. (2020). Exposure of heavy metals in coal gangue soil, in and outside the mining area using BCR conventional and vortex assisted and single step extraction methods. Impact on orchard grass. Chemosphere, 255, 126960.

    Article  CAS  Google Scholar 

  • Sahito, O. M., Afridi, H. I., Kazi, T. G., & Baig, J. A. (2015). Evaluation of heavy metal bioavailability in soil amended with poultry manure using single and BCR sequential extractions. International Journal of Environmental Analytical Chemistry, 95(11), 1066–1079.

    CAS  Google Scholar 

  • Sahito, O. M., Kazi, T. G., Afridi, H. I., Baig, J. A., Talpur, F. N., Baloch, S., Memon, N. S., & Kori, N. G. (2016). Assessment of toxic metal uptake by different vegetables grown on soils amended with poultry waste: Risk Assessment. Water Air and Soil Pollution., 227(11), 423.

    Article  Google Scholar 

  • Saifullah, Dahlawi, S., Naeem, A., Rengel, Z., & Naidu, R. (2018). Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Science of the Total Environment, 625(320), 335.

    Google Scholar 

  • Saleh, T. A., Sari, A., & Tuzen, M. (2017a). Effective adsorption of antimony (III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent. Chemical Engineering Journal, 307, 230–238.

    Article  CAS  Google Scholar 

  • Saleh, T. A., Tuzen, M., & Sari, A. (2017b). Magnetic activated carbon loaded with tungsten oxide nanoparticles for aluminum removal from waters. Journal of Environmental Chemical Engineering, 5(3), 2853–2860.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., & Rinklebe, J. (2015). Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil. Ecological Engineering, 74, 319–326.

    Article  Google Scholar 

  • Tu, Z. N., Ren, X. N., Zhao, J. C., Awasthi, S. K., Wang, Q., Awasthi, M. K., Zhang, Z. Q., & Li, R. H. (2019). Synergistic effects of biochar/microbial inoculation on the enhancement of pig manure composting. Biochar, 1, 127–137.

    Article  Google Scholar 

  • Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., & Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1–2), 235–246.

    Article  Google Scholar 

  • Wang, Y. Y., Liu, Y. X., Lu, H. H., Yang, R. Q., & Yang, S. M. (2018). Competitive adsorption of Pb (II), Cu (II), and Zn (II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions. Journal of Solid State Chemistry, 261, 53–61.

    Article  CAS  Google Scholar 

  • Waris, M., Baig, J. A., Talpur, F. N., Afridi, H. I., Kazi, T. G., & Yousa, H. (2022). Evaluation of selected halophytes for phytoextraction of Co, Cu, Zn and capability of desalination of saline soil. International Journal of Environmental Science and Technology., 19(4), 2737–2746.

    Article  CAS  Google Scholar 

  • Xu, Y. Z., Fang, Z. Q., & Tsang, E. P. (2016). In situ immobilization of cadmium in soil by stabilized biochar-supported iron phosphate nanoparticles. Environmental Science and Pollution Research, 23(19), 19164–19172.

    Article  CAS  Google Scholar 

  • Xu, C. B., Zhao, J. W., Yang, W. J., He, L., Wei, W. X., Tan, X., Wang, J., & Lin, A. J. (2020). Evaluation of biochar pyrolyzed from kitchen waste, corn straw, and peanut hulls on immobilization of Pb and Cd in contaminated soil. Environmental Pollution, 261, 114133.

    Article  CAS  Google Scholar 

  • Yuan, J. H., & Xu, R. K. (2011). The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 27(1), 110–115.

    Article  Google Scholar 

  • Zhang, X., Wang, D., Jiang, C., & Peng, S. (2013). Biochar and research advances of biochar in acidic soil improvement. Hubei Agricultural Sciences (China), 5, 997–1000.

    Google Scholar 

  • Zhang, H., Shao, J. G., Zhang, S. H., Zhang, X., & Chen, H. P. (2020). Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil. Journal of Hazardous Materials, 390, 121349.

    Article  CAS  Google Scholar 

  • Zhang, P., Xue, B., Jiao, L., Meng, X. Y., Zhang, L. Y., Li, B. X., & Sun, H. W. (2022). Preparation of ball-milled phosphorus-loaded biochar and its highly effective remediation for Cd-and Pb-contaminated alkaline soil. Science of the Total Environment, 813, 152648.

    Article  CAS  Google Scholar 

  • Zhou, Y. F., Xu, M. M., Huang, D. H., Xu, L., Yu, M. C., Zhu, Y. Q., & Niu, J. F. (2021). Modulating hierarchically microporous biochar via molten alkali treatment for efficient adsorption removal of perfluorinated carboxylic acids from wastewater. Science of the Total Environment, 757, 143719.

    Article  CAS  Google Scholar 

  • Zwetsloot, M. J., Lehmann, J., Bauerle, T., Vanek, S., Hestrin, R., & Nigussie, A. (2016). Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae-biochar interactions. Plant and Soil, 408(1–2), 95–105.

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Foundation of China (51504174 and 51876148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Liu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Liu, Y., Feng, J. et al. Co-Pyrolyzed Rice Husk and Cow Bone In Situ Cd-Remediation for Corn Plant Growth. A Comprehensive Case Study. Water Air Soil Pollut 234, 151 (2023). https://doi.org/10.1007/s11270-023-06156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06156-4

Keywords

Navigation