Skip to main content
Log in

Using Aeration to Enhance Phosphorus Adsorption and Immobilization by the Sediment and LMB

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Dissolved oxygen (DO) in the overlying water is important in influencing internal phosphorus (P) release. However, the potentially associative effect of DO on the P adsorption and immobilization by La-modified bentonite (LMB) has not been quantified. This 80-day incubation experiment showed the synergistic effect of DO and LMB in the overlying water, which caused the reduction of dissolved inorganic phosphorus (DIP) by 51% (DO = 5 mg L−1) and 77% (DO = 7 mg L−1) on average, respectively, compared with the DO of 3 mg L−1. In addition, the DIP in the pore water decreased from 1.12 mg P L−1 (control) to 0.014 mg P L−1 (5 mg L−1) and 0.004 mg P L−1 (7 mg L−1). Besides, the Fe2+ and NH4+ concentrations were also reduced significantly in the pore water, suggesting the rise in the redox potential in the sediment, which helped P immobilization. Chemical P-fractionation experiments indicate that the Fe-P reduction in sediment was the most significant, reduced by 14%, followed by NH4Cl-P (12%), causing a reduction by 13% (3 mg L−1), 23% (5 mg L−1) and 27% (7 mg L−1) of mobile P in the surface 7-cm sediment, respectively. However, the released P ions were rapidly adsorbed by the Al ions and Ca ions, as well as their compounds, thereby leading to the obvious rise in inert P in the sediment. Accordingly, it was suggested that DO and LMB had a synergistic effect on external P adsorption and immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • [APHA]. (1995). American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 19th ed. Water Environment Federation.

  • Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens, G. E. (2009). Controlling eutrophication: Nitrogen and P. Science, 323(5917), 1014–1015.

    CAS  Google Scholar 

  • Cooke, G. D., Welch, E. B., Martin, A. B., Fulmer, D. G., Hyde, J. B., & Schrieve, G. D. (1993). Effectiveness of Al, Ca, and Fe salts for control of internal phosphorus loading in shallow and deep lakes. Hydrobiologia, 253(1–3), 323–335.

    CAS  Google Scholar 

  • Copetti, D., Finsterle, K., Marziali, L., Stefani, F., Tartari, G., Douglas, G., Reitzel, K., Spears, B. M., Winfield, L. J., Crosa, G., D’Haese, P., Vasseri, S., & Lürling, M. (2016). Eutrophication management in surface waters using lanthanum modified bentonite: A review. Water Research, 97, 162–174.

    CAS  Google Scholar 

  • Ding, S. M., Sun, Q., Chen, X., Liu, Q., Wang, D., Lin, J., Zhang, C. S., & Tsang, D. C. W. (2018). Synergistic adsorption of phosphorus by iron in lanthanum modified bentonite (Phoslock®): New insight into sediment phosphorus immobilization. Water Research, 134, 32–43.

    CAS  Google Scholar 

  • Dithmer, L., Nielsen, U. G., Lürling, M., Spears, B. M., Yasseri, S., Lundberg, D., Moore, A., Jensen, N. D., & Reitzel, K. (2016). Responses in sediment phosphorus and lanthanum concentrations and composition across 10 lakes following applications of lanthanum modified bentonite. Water Research, 97, 101–110.

    CAS  Google Scholar 

  • Douglas, G. B. (1997) Remediation material and remediation process for sediments. Australian National phase entry PO5896.

  • Gibbs, M., & Özkundakci, D. (2011). Effects of a modified zeolite on P and N processes and fluxes across the lake sediment–water interface using core incubations. Hydrobiologia, 661(1), 21–35.

    CAS  Google Scholar 

  • Gomez, E., Durillon, C., Rofes, G., & Picot, B. (1999). Phosphate adsorption and release from sediments of brackish lagoons: pH, O2 and loading influence. Water Research, 33(10), 2437–2447.

    CAS  Google Scholar 

  • Hart, S. C., Stark, J. M., Davidson, E. A., & Firestone, M. K. (1994). Nitrogen mineralization, immobilization, and nitrification. In R. V. Weaver (Ed.), Methods of soil analysis. Part 2. SSSA Book Series 5 (pp. 985–1018). Madison: Soil Sci Soc Am Soc Agron.

    Google Scholar 

  • Horppila, J., Holmroos, H., Niemistö, J., Massa, I., Nygrén, N., Schönach, P., Tapio, P., & Tammeorg, O. (2017). Variations of internal phosphorus loading and water quality in a hypertrophic lake during 40 years of different management efforts. Ecological Engineering, 103, 264–274.

    Google Scholar 

  • Huang, X., Shi, W., Ni, J., & Li, Z. (2017). Evaluation of laboratory-scale in situ capping sediments with purple parent rock to control the eutrophication. Environmental Science and Pollution Research, 24(8), 7114–7123.

    CAS  Google Scholar 

  • Joy, A., Anoop, P., Rajesh, R., Mathew, J., Mathew, A., & Gopinath, A. (2019). Spatial variation of phosphorus fractionation in the coral reef sediments of Lakshadweep Archipelago, Indian Ocean. Chemistry and Ecology, 35(7), 592–612.

    CAS  Google Scholar 

  • Katarzyna, K. M., Renata, D., Ryszard, G., Anna, K., & Beata, M. (2018). Internal phosphorus loading from the bottom sediments of a dimictic lake during its sustainable restoration. Water, Air, and Soil Pollution, 229(8), 280–298.

    Google Scholar 

  • Kumar, E., Bhatnagar, A., Hogland, W., Marques, M., & Sillanpää, M. (2014). Interaction of inorganic anions with iron-mineral adsorbents in aqueous media -a review. Advances in Colloid and Interface Science, 203, 11–21.

    CAS  Google Scholar 

  • Li, D. P., & Huang, Y. (2013). Phosphorus uptake by suspended sediments from a heavy eutrophic and standing water system in Suzhou, China. Ecological Engineering, 60, 29–36.

    CAS  Google Scholar 

  • Li, D. P., Huang, Y., Fan, C. X., & Yan, Y. (2011). Contributions of phosphorus on sedimentary phosphorus bioavailability under sediment resuspension conditions. Chemical Engineering Journal, 168(3), 1049–1054.

    CAS  Google Scholar 

  • Lin, J., Sun, Q., Ding, S. M., Wang, D., Wang, Y., Chen, M. S., Shi, L., Fan, X. F., & Tsang, D. C. W. (2017). Mobile phosphorus stratification in sediments by aluminum immobilization. Chemosphere, 186, 644–651.

    CAS  Google Scholar 

  • Lin, J. W., Jiang, B. H., & Zhan, Y. H. (2018). Effect of pre-treatment of bentonite with sodium and calcium ions on phosphate adsorption onto zirconium-modified bentonite. Journal of Environmental Management, 217, 183–195.

    CAS  Google Scholar 

  • Lürling, M., & Faassen, E. J. (2012). Controlling toxic cyanobacteria: Effects of dredging and phosphorus-binding clay on cyanobacteria and microcystins. Water Research, 46(5), 1447–1459.

    Google Scholar 

  • Meis, S., Spears, B. M., Maberly, S. C., O’Malley, M. B., & Perkins, R. G. (2012). Sediment amendment with phoslock® in Clatto Reservoir (Dundee, UK): Investigating changes in sediment elemental composition and phosphorus fractionation. Journal of Environmental Management, 93(1), 185–193.

    CAS  Google Scholar 

  • Meis, S., Spears, B. M., Maberly, S. C., & Perkins, R. G. (2013). Assessing the mode of action of phoslock® in the control of phosphorus release from the bed sediments in a shallow lake (Loch Flemington, UK). Water Research, 47(13), 4460–4473.

    CAS  Google Scholar 

  • Miao, S., Delaune, R. D., & Jugsujinda, A. (2006). Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake. Science of the Total Environment, 371(1–3), 334–343.

    CAS  Google Scholar 

  • Özkundakci, D., Hamilton, D. P., & Scholes, P. (2010). Effect of intensive catchment and in-lake restoration procedures on phosphorus concentrations in a eutrophic lake. Ecological Engineering, 36(4), 396–405.

  • Perkins, R. G., & Underwood, G. J. C. (2001). The potential for phosphorus release across the sediment-water interface in a eutrophic reservoir dosed with ferric sulphate. Water Research, 35(6), 1399–1406.

    CAS  Google Scholar 

  • Rahutomo, S., Kovar, J. L., & Thompson, M. L. (2018). Inorganic and organic phosphorus in sediments in the walnut creek watershed of Central Iowa, USA. Water, Air and Soil Pollution, 229(3), 72.

  • Ribeiro, D. C., Martins, G., Nogueira, R., Cruz, J. V., & Brito, A. G. (2008). Phosphorus fractionation in volcanic lake sediments (Azores – Portugal). Chemosphere, 70(7), 1256–1263.

    CAS  Google Scholar 

  • Robb, M., Greenop, B., Goss, Z., Douglas, G., & Adeney, J. (2003). Application of Phoslock™, an innovative phosphorus binding clay, to two Western Australian waterways: Preliminary findings. Hydrobiologia, 494(1–3), 237–243.

    CAS  Google Scholar 

  • Ross, G., Haghseresht, F., & Cloete, T. E. (2008). The effect of pH and anoxia on the performance of phoslock®, a phosphorus binding clay. Harmful Algae, 7(4), 545–550.

    Google Scholar 

  • Rydin, E. (2000). Potentially mobile phosphorus in Lake Erken sediment. Water Research, 34(7), 2037–2042.

    CAS  Google Scholar 

  • Shen, Y., Duan, Y. H., Mclaughlin, N., Huang, S. M., Guo, D. D., & Xu, M. G. (2019). Phosphorus desorption from calcareous soils with different initial Olsen-P levels and relation to phosphate fractions. Journal of Soils and Sediments, 19(7), 2997–3007.

    CAS  Google Scholar 

  • Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506-509(1–3), 135–145.

    Google Scholar 

  • Stookey, L. L. (1970). Ferrozine a new spectrophoto metric reagent for iron. Analytical Chemistry, 42(7), 779–781.

    CAS  Google Scholar 

  • Tu, L. Y., Jarosch, K. A., Schneider, T., & Grosjean, M. (2019). Phosphorus fractions in sediments and their relevance for historical lake eutrophication in the Ponte Tresa basin (Lake Lugano, Switzerland) since 1959. Science of the Total Environment, 685, 806–817.

    CAS  Google Scholar 

  • Vopel, K., Gibbs, M., Hickey, C. W., & Quinn, J. (2008). Modification of sediment–water solute exchange by sediment-capping materials: Effects on O2 and pH. Marine and Freshwater Research, 59(12), 1101–1110.

    CAS  Google Scholar 

  • Waajen, G., Oosterhout, F. V., Douglas, G., & Lürling, M. (2015). Management of eutrophication in Lake De Kuil (the Netherlands) using combined flocculant - lanthanum modified bentonite treatment. Water Research, 97, 83–95.

    Google Scholar 

  • Wang, C. H., & Jiang, H. L. (2016). Chemicals used for in situ immobilization to reduce the internal phosphorus loading from lake sediments for eutrophication control. Critical Reviews in Environmental Science and Technology, 46(10), 947–997.

    CAS  Google Scholar 

  • Wang, C. H., Bai, L. L., Jiang, H. L., & Xu, H. C. (2016). Algal bloom sedimentation induces variable control of lake eutrophication by phosphorus inactivating agents. Science of the Total Environment, 557, 479–488.

    Google Scholar 

  • Wu, Y., Wang, X. X., Zhou, J., Bing, H. J., Sun, H. Y., & Wang, J. P. (2016). The fate of phosphorus in sediments after the full operation of the Three Gorges Reservoir. China Environmental Pollution, 214, 282–289.

    CAS  Google Scholar 

  • Xu, D., Ding, S. M., Sun, Q., Zhong, J. C., Wu, W., & Jia, F. (2012). Evaluation of in situ capping with clean soils to control phosphate release from sediments. Science of the Total Environment, 438(3), 334–341.

    CAS  Google Scholar 

  • Xu, Y., Han, F. E., Li, D. P., Zhou, J., & Huang, Y. (2018). Transformation of internal sedimentary phosphorus fractions by point injection of CaO2. Chemical Engineering Journal, 343, 408–415.

    CAS  Google Scholar 

  • Yang, M. J., Lin, J. W., Zhan, Y. H., Zhu, Z. L., & Zhang, H. H. (2015). Immobilization of phosphorus from water and sediment using zirconium-modified zeolites. Environmental Science and Pollution Research, 22(5), 3606–3619.

    CAS  Google Scholar 

  • Yin, H. B., & Kong, M. (2015). Reduction of sediment internal P-loading from eutrophic lakes using thermally modified calcium-rich attapulgite-based thin-layer cap. Journal of Environmental Management, 151, 178–185.

    CAS  Google Scholar 

  • Yin, H. B., Kong, M., & Fan, C. X. (2013). Batch investigations on P immobilization from wastewaters and sediment using natural calcium rich sepiolite as a reactive material. Water Research, 47(13), 4247–4258.

    CAS  Google Scholar 

  • Yin, H. B., Kong, M., Han, M. X., & Fan, C. X. (2016). Influence of sediment resuspension on the efficacy of geoengineering materials in the control of internal phosphorous loading from shallow eutrophic lakes. Environmental Pollution, 219, 568–579.

    CAS  Google Scholar 

  • Yin, H. B., Du, Y. X., Kong, M., & Liu, C. (2017). Interactions of riverine suspended particulate matter with phosphorus inactivation agents across sediment-water interface and the implications for eutrophic lake restoration. Chemical Engineering Journal, 327, 150–161.

    CAS  Google Scholar 

  • Zamparas, M., & Zacharias, I. (2014). Restoration of eutrophic freshwater by managing internal nutrient loads. A review. Science of the Total Environment, 496, 551–562.

    CAS  Google Scholar 

  • Zamparas, M., Gianni, A., Stathi, P., Deligiannakis, Y., & Zacharias, I. (2012). Removal of phosphate from natural waters using innovative modified bentonites. Applied Clay Science, 62–63, 101–106.

    Google Scholar 

  • Zhang, H., Boegman, L., Scavia, D., & Culver, D. A. (2016a). Spatial distributions of external and internal phosphorus loads in Lake Erie and their impacts on phytoplankton and water quality. Journal of Great Lakes Research, 42(6), 1212–1227.

    CAS  Google Scholar 

  • Zhang, Y., He, F., Liu, Z. S., Liu, B. Y., Zhou, Q. H., & Wu, Z. B. (2016b). Release characteristics of sediment phosphorus in all fractions of West Lake, Hang Zhou, China. Ecological Engineering, 95, 645–651.

    Google Scholar 

  • Zhang, W. Q., Jin, X., Meng, X., Tang, W. Z., & Shan, B. Q. (2018). Phosphorus transformations at the sediment–water interface in shallow freshwater ecosystems caused by decomposition of plant debris. Chemosphere, 201, 328–334.

    CAS  Google Scholar 

  • Zhou, A. M., Wang, D. S., & Tang, H. X. (2005). Phosphorus fractionation and bio-availability in Taihu Lake (China) sediments. Journal of Environmental Science, 17(3), 384–388.

    CAS  Google Scholar 

  • Zhou, J., Li, D. P., Chen, S. T., Xu, Y., Geng, X., Guo, C. R., & Huang, Y. (2019). Sedimentary phosphorus immobilization with the addition of amended calcium peroxide material. Chemical Engineering Journal, 357, 288–297.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 51778393) and Graduate Research and Innovation Projects of Jiangsu Province (SJCX18_0870). Financial support was also provided by the Collaborative Innovation Center of Water Treatment Technology and Material of Jiangsu Province and National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dapeng Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Li, D., Xu, C. et al. Using Aeration to Enhance Phosphorus Adsorption and Immobilization by the Sediment and LMB. Water Air Soil Pollut 231, 93 (2020). https://doi.org/10.1007/s11270-020-4451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-4451-z

Keywords

Navigation