Skip to main content
Log in

Degradation Products, Mineralization, and Toxicity Assessment of Pesticides Malathion and Fenitrothion

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate, analyze, and compare applied techniques suitable for achieving efficient removal of organophosphorus pesticides (OPPs) (malathion and fenitrothion) from aqueous solutions and analyze the degradation products and processes. Pesticide degradation efficiency (%) was monitored by high-performance liquid chromatography (HPLC) equipped with a photodiode array detector (DAD), while mineralization degree was determined by total organic carbon analysis (TOC). Daphnia magna was used for screening the environmental safety aspects of the degradation methods, i.e., for assessing the toxicity of solutions obtained after degradation. Additionally, a surface river water was utilized to examine the likely influence of organic matter on the pesticides’ degradation. Pesticide degradation products were identified using gas chromatography with a triple quadrupole mass detector (GC-MS/MS) as well as ultrahigh-performance liquid chromatography coupled with a linear ion trap, Orbitrap mass spectrometer (UHPLC-LTQ Orbitrap MS), and a simple pesticide degradation mechanism is proposed. Removal of pesticides from water using chlorine dioxide was successful, resulting in high degradation efficiency (98% for malathion and 81% for fenitrothion). Partial mineralization was achieved, and Daphnia magna mortality decreased in the waters containing degradation products (compared with the parent pesticides), indicating that the solutions formed were less toxic than the parent pesticides. Lower degradation rates (80% for malathion and 72% for fenitrothion) in Sava River water were measured, indicating the influence of the organic matter contained in this naturally occurring surface water. The results prove that chlorine dioxide could be used as an agent for successful removal of these OPPs from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal, S., Tyagi, I., Kumar Gupta, V., Hadi Dehghani, M., Bagheri, A., Yetilmezsoy, K., Amrane, A., Heibati, B., & Rodriguez-Couto, S. (2016). Degradation of azinphos-methyl and chlorpyrifos from aqueous solutions by ultrasound treatment. Journal of Molecular Liquids, 221, 1237–1242.

    CAS  Google Scholar 

  • Aker, W. G., Hu, X., Wang, P., & Hwang, H.-M. (2008). Comparing the relative toxicity of malathion and malaoxon in blue catfish Ictalurus furcatus. Environmental Toxicology, 23, 548–554.

    CAS  Google Scholar 

  • Androutsopoulos, V. P., Hernandez, A. F., Liesivuori, J., & Tsatsakis, A. M. (2013). A mechanistic overview of health associated effects of low levels of organochlorine and organophosphorous pesticides. Toxicology, 307, 89–94.

    CAS  Google Scholar 

  • APHA (American Public Health Association). (1998). American Water Works Association, and water environment federation, standard methods for the examination of water and wastewater (20th ed.). Washington DC: American Public Health Association.

    Google Scholar 

  • Bavcon Kralj, M., Černigoj, U., Franko, M., & Trebše, P. (2007). Comparison of photocatalysis and photolysis of malathion, isomalathion, malaoxon, and commercial malathion—products and toxicity studies. Water Research, 41, 4504–4514.

    CAS  Google Scholar 

  • Bensalah, N., Khodary, A., & Abdel-Wahab, A. (2011). Kinetic and mechanistic investigations of mesotrione degradation in aqueous medium by Fenton process. Journal of Hazardous Materials, 189, 479–485.

    CAS  Google Scholar 

  • Bondarenko, S., & Gan, J. (2004). Degradation and sorption of selected organophosphate and carbamate insecticides in urban stream sediments. Environmental Toxicology and Chemistry, 23, 1809–1814.

    CAS  Google Scholar 

  • Bowman, B. T., & Sans, W. W. (1983). Further water solubility determinations of insecticidal compounds. Journal of Environmental Science and Health, Part B, 18, 221–227.

    CAS  Google Scholar 

  • Chamberlain, E., Shi, H., Wang, T., Ma, Y., Fulmer, A., & Adams, C. (2012). Comprehensive screening study of pesticide degradation via oxidation and hydrolysis. Journal of Agricultural and Food Chemistry, 60, 354–363.

    CAS  Google Scholar 

  • Chambers, W. H. (1992). Organophosphorus compounds: An overview. In J. E. Chambers & P. E. Levi (Eds.), Organophosphates, chemistry, fate, and effects (pp. 3–17). San Diego: Academic Press.

    Google Scholar 

  • Chanda, A., Khetan, S. K., Banerjee, D., Ghosh, A., & Collins, T. J. (2006). Total degradation of fenitrothion and other organophosphorus pesticides by catalytic oxidation employing Fe-TAML peroxide activators. Journal of the American Chemical Society, 128, 12058–12059.

    CAS  Google Scholar 

  • Chen, Q., Wang, Y., Chen, F., Zhang, Y., & Liao, X. (2014). Chlorine dioxide treatment for the removal of pesticide residues on fresh lettuce and in aqueous solution. Food Control, 40, 106–112.

    CAS  Google Scholar 

  • Chu, S.-P., Huang, C.-K., Chen, P.-S., & Huang, S.-D. (2014). Two dispersive liquid–liquid microextraction methods coupled with gas chromatography–mass spectrometry for the determination of organophosphorus pesticides in field water. Environmental Chemistry, 11, 661–672.

    CAS  Google Scholar 

  • Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M., & Vasic, V. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11, 315–335.

    CAS  Google Scholar 

  • Coupe, R. H., & Blomquist, J. D. (2004). Water-soluble pesticides in finished water of community water supplies. Journal American Water Works Association, 96, 56–68.

    CAS  Google Scholar 

  • Derbalah, A., Chidya, R., Jadoon, W., & Sakugawa, J. (2019). Temporal trends in organophosphorus pesticides use and concentrations in river water in Japan, and risk assessment. Journal of Environmental Sciences, 79, 135–152.

    Google Scholar 

  • Doong, R., & Chang, W. (1998). Photoassisted iron compound catalytic degradation of organophosphorous pesticides with hydrogen peroxide. Chemosphere, 37, 2563–2572.

    CAS  Google Scholar 

  • Fei, X., & Sun, G. (2009). Oxidative degradation of organophosphorous pesticides by N-halamine fabrics. Industrial & Engineering Chemistry Research, 48, 5604–5609.

  • Gul, M. M., & Ahmad, K. S. (2020). Assessment of methyl 2-({[(4,6-dimethoxypyrimidin-2-yl)carbamoyl] sulfamoyl}methyl)benzoate through biotic and abiotic degradation modes. Open Chemistry, 18, 314–324.

    Google Scholar 

  • Hayatsu, M., Hirano, M., & Tokuda, S. (2000). Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100. Applied and Environmental Microbiology, 66, 1737–1740.

    CAS  Google Scholar 

  • Hörsing, M., Kosjek, T., Andersen, H. R., Heath, E., & Ledin, A. (2012). Fate of citalopram during water treatment with O3, ClO2, UV and Fenton oxidation. Chemosphere, 89, 129–135.

    Google Scholar 

  • Hwang, E.-S., Cash, J. N., & Zabik, M. J. (2006). Degradation of mancozeb and ethylenethiourea in apples due to postharvest treatments and processing. Journal of Food Science, 67, 3295–3300.

    Google Scholar 

  • Jariyal, M., Jindal, V., Mandal, K., Guptab, V. K., & Singh, B. (2018). Bioremediation of organophosphorus pesticide phorate in soil by microbial consortia. Ecotoxicology and Environmental Safety, 159, 310–316.

    CAS  Google Scholar 

  • Jia, X., Feng, L., Liu, Y., & Zhang, L. (2017). Oxidation of antipyrine by chlorine dioxide: Reaction kinetics and degradation pathway. Chemical Engineering Journal, 309, 646–654.

    CAS  Google Scholar 

  • Jović, M., Manojlović, D., Stanković, D., Dojčinović, B., Obradović, B., Gašić, U., & Roglić, G. (2013). Degradation of triketone herbicides, mesotrione and sulcotrione, using advanced oxidation processes. Journal of Hazardous Materials, 260, 1092–1099.

    Google Scholar 

  • Jović, M., Manojlović, D., Stanković, D., Gašić, U., Jeremić, D., Brčeski, I., & Roglić, G. (2015). Electrochemical degradation of triketone herbicides and identification of their main degradation products. CLEAN - Soil Air Water, 43, 1093–1099.

    Google Scholar 

  • Kameya, T., Saito, M., Kondo, T., Toriumi, W., Fujie, K., Matsushita, T., & Takanashi, H. (2012). Detection of fenitrothion and its degradation products 3-methyl-4-nitrophenol in water environment. Journal of Water and Environment Technology, 10, 427–436.

    Google Scholar 

  • Kanade, S. N., Ade, A. B., & Khilare, V. C. (2012). Malathion degradation by Azospirillum lipoferum Beijerinck. Science Research Reporter, 2, 94–103.

    Google Scholar 

  • Kannan, V., & Vanitha, V. (2005). Influence of assay medium on degradation of malathion by Serratia marcescens. Indian Journal of Biotechnology, 4, 277–283.

    CAS  Google Scholar 

  • Katsumata, H., Okada, T., Kaneco, S., Suzuki, T., & Ohta, K. (2010). Degradation of fenitrothion by ultrasound/ferrioxalate/UV system. Ultrasonics Sonochemistry, 17, 200–206.

    CAS  Google Scholar 

  • Katz, A., & Narkis, N. (2001). Removal of chlorine dioxide disinfection by-products by ferrous salts. Water Research, 35, 101–108.

    CAS  Google Scholar 

  • Kim, Y. H., Ahn, J. Y., Moon, S. H., & Lee, J. (2005). Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxysporum f. sp. pisi cutinase. Chemosphere, 60, 1349–1355.

    CAS  Google Scholar 

  • Klüttgen, B., Dülmer, U., Engels, M., & Ratte, T. H. (1994). ADaM, an artificial freshwater for the culture of zooplankton. Water Research, 28, 743–746.

    Google Scholar 

  • Kolpin, D. W., Barbash, J. E., & Gilliom, R. J. (1998). Occurrence of pesticides in shallow groundwater of the United States: initial results from the National Water-Quality Assessment Program. Environmental Science and Technology, 32, 558–566.

    CAS  Google Scholar 

  • Korn, C., Andrews, R. C., & Escobar, M. D. (2002). Development of chlorine dioxide-related by product models for drinking water treatment. Water Research, 36, 330–342.

    CAS  Google Scholar 

  • Kostić, A., Milinčić, D., Gašić, U., Nedić, N., Stanojević, S., Tešić, Ž., & Pešić, M. (2019). Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. LWT - Food Science and Technology, 112, 108224.

    Google Scholar 

  • Lahr, J., Badji, A., Marquenie, S., Schuiling, E., Ndour, K. B., Diallo, A. O., & Everts, J. W. (2001). Acute toxicity of locust insecticides to two indigenous invertebrates from Sahelian temporary ponds. Ecotoxicology and Environmental Safety, 48, 66–75.

    CAS  Google Scholar 

  • LeBlanc, G. A. (1984). Interspecies relationships in acute toxicity of chemicals to aquatic organisms. Environmental Toxicology and Chemistry, 3, 47–60.

    CAS  Google Scholar 

  • Li, Q., Yu, J., Chen, W., Ma, X., Li, G., Chen, G., & Deng, J. (2018). Degradation of triclosan by chlorine dioxide: Reaction mechanism,2,4-dichlorophenol accumulation and toxicity evaluation. Chemosphere, 207, 449–456.

    CAS  Google Scholar 

  • Liu, H., Yao, J., Wang, L., Wang, X., Qu, R., & Wang, Z. (2019). Effective degradation of fenitrothion by zero-valent iron powder (Fe0) activated persulfate in aqueous solution: Kinetic study and product identification. Chemical Engineering Journal, 358, 1479–1488.

    CAS  Google Scholar 

  • Mao, Q., Li, Q., Li, H., Yuan, S., & Zhang, J. (2019). Oxidative paraben removal with chlorine dioxide: Reaction kinetics and mechanism. Separation and Purification Technology, 237, 116327.

    Google Scholar 

  • Nandan, S., Tailor, D., & Yadav, A. (2016). Malathion pesticide degradation by advanced oxidation process (UV-irradiation). International Research Journal of Advanced Engineering and Science, 1, 153–156.

    Google Scholar 

  • OECD Guideline for testing of chemicals. (2004). Daphnia sp. Acute Immobilisation Test. OECD Guideline 202.

  • Ohashi, N., Tsuchiya, Y., Sasano, H., & Hamada, A. (1994). Ozonation products of organophosphorous pesticides in water. Journal of Toxicology and Environmental Health, 40, 185–192.

    CAS  Google Scholar 

  • Pehkonen, S. O., & Zhang, Q. (2002). The degradation of organophosphorus pesticides in natural waters: A critical review. Critical Reviews in Environmental Science and Technology, 32, 7–72.

    Google Scholar 

  • Pergal, M. V., Kodranov, I. D., Pergal, M. P., Dojčinović, B. P., Stanković, D. S., Petković, B. B., & Manojlović, D. D. (2018). Assessment of degradation of sulfonylurea herbicides in water by chlorine dioxide. Water Air Soil & Pollution, 229, 310.

    Google Scholar 

  • Persoone, G., Marsalek, B., Blinova, I., Törökne, A., Zarina, D., Manusadzianas, L., Nalecz-Jawecki, G., Tofan, L., Stepanova, N., Tothova, L., & Kolar, B. A. (2003). Practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environmental Toxicology, 18, 395–402.

    CAS  Google Scholar 

  • Pohlman, F. W., Stivarius, M. R., McElyea, K. S., Johnson, Z. B., & Johnson, M. G. (2002). Reduction of microorganisms in ground beef using multiple intervention technology. Meat Science, 61, 315–322.

    CAS  Google Scholar 

  • Ratna Kumari, A., Jeevan, G., Ashok, M., Koteswara Rao, C., & Vamsi, K. S. K. (2012). Malathion degradation by Bacillus spp. isolated from soil. Journal of Pharmacy, 2, 37–42.

    Google Scholar 

  • Rodgers, S. L., Cash, J. N., Siddiq, M., & Ryser, E. T. A. (2004). A comparison of different chemical sanitizers for inactivating Escherichia coli O157:H7 and listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. Journal of Food Protection, 67, 721–731.

    CAS  Google Scholar 

  • Sanders, H. O., Finley, M. T., Hunn, J. B. (1983). Acute toxicity of six forest insecticides to three aquatic invertebrates and four fishes, technical paper no. 110. (Washington, DC: U.S. Dept. of the Interior, Fish and Wildlife Service).

  • Sarikaya, R., Selvi, M., Koçak, O., & Erkoç, F. (2007). Investigation of acute toxicity of fenitrothion on guppies Poecilia reticulata. Journal of Applied Toxicology, 273, 18–321.

    Google Scholar 

  • Savi, G. D., Bortolloto, T., Runtzel, C., & Scussel, V. M. (2016). Effect of ozone gas on degradation of organophosphate and pyrethroid pesticide residues in whole wheat (Triticum aestivum) grains effect of during storage. ′Proceedings of the 10th International Conference on Controlled Atmosphere and Fumigation in Stored Products (CAF2016)′, pp. 220–224. (CAF Permanent Committee Secretariat, Winnipeg, Canada; In: Navarro S, Jayas DS, Alagusundaram K, (Eds.)).

  • Shi, L., Li, N., Wang, C., & Wang, C. (2010). Catalytic oxidation and spectroscopic analysis of simulated wastewater containing ochlorophenol by using chlorine dioxide as oxidant. Journal of Hazardous Materials, 178, 1137–1140.

    CAS  Google Scholar 

  • Shiu, W. Y., Ma, K. C., Mackay, D., Seiber, N. J., & Wauchope, R. D. (1990). Solubilities of pesticide chemicals in water part II: Data compilation. Reviews of Environmental Contamination and Toxicology, 116, 15–187.

    CAS  Google Scholar 

  • Singh, B. K., & Walker, A. (2006). Microbial degrading of organophosphorus compounds. FEMS Microbiology Reviews, 30, 428–471.

    CAS  Google Scholar 

  • Sorlini, S., & Collivignarelli, C. (2005). Chlorite removal with granular activated carbon. Desalination, 176, 255–265.

    CAS  Google Scholar 

  • Sorlini, S., Gialdini, F., Biasibetti, M., & Collivignarelli, C. (2014). Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation. Water Research, 54, 44–52.

    CAS  Google Scholar 

  • Starner, B. K., Kuivila, K. M., Jennings, B., & Moon, G. E. (1999). Degradation rates of six pesticides in water from the Sacramento River, California. ′Proceedings of the Technical Meeting, Charleston, South Carolina, v. 2. Contamination of hydrologic Systems and Related Ecosystems, U.S. Geological Survey Water-Resources Investigations Report 99–4018 B′.

  • Stefan, M. I. (2018). Advanced oxidation processes for water treatment, fundamentals and applications (pp. 1–681). London: IWA Publishing.

    Google Scholar 

  • Sun, Y., Nie, W.-K., Hu, X.-J., Ma, X.-H., Sun, Y.-J., & Wen, Y. (2020). Oxidative degradation of polycyclic aromatic hydrocarbons in contaminated industrial soil using chlorine dioxide. Chemical Engineering Journal, 394, 124857.

    CAS  Google Scholar 

  • Teodorovic, I., & Mauric, N. (2003). TesTox version 1.0.

  • Thabit, T. M. A., & EL-Naggar, M. A. H. (2013). Malathion degradation by soil isolated bacteria and detection of degradation products by GC-MS. International Journal of Environmental Science, 3, 1467–1476.

    Google Scholar 

  • Tian, F.-X., Xu, B., Zhang, T.-Y., & Gao, N.-Y. (2014). Degradation of phenylurea herbicides by chlorine dioxide and formation of disinfection by-products during subsequent chlor(am)ination. Chemical Engineering Journal, 258, 210–217.

    CAS  Google Scholar 

  • Vandekinderen, I., Van Camp, J., De Meulenaer, B., Veramme, K., Bernaert, N., Denon, Q., Ragaert, P., & Devlieghere, F. (2009). Moderate and high doses of sodium hypochlorite, neutral electrolyzed oxidizing water, peroxyacetic acid, and gaseous chlorine dioxide did not affect the nutritional and sensory qualities of fresh-cut iceberg lettuce (Lactuca sativa Var. capitata L.) after washing. Journal of Agricultural and Food Chemistry, 57, 4195–4203.

    CAS  Google Scholar 

  • Wang, Y., Liu, H., Liu, G., & Xie, Y. (2014). Oxidation of diclofenac by aqueous chlorine dioxide: Identification of major disinfection by products and toxicity evaluation. Science of the Total Environment, 473–474, 437–445.

    Google Scholar 

  • Wang, Y., Liu, H., Xie, Y., Ni, T., & Liu, G. (2015). Oxidative removal of diclofenac by chlorine dioxide: Reaction kinetics and mechanism. Chemical Engineering Journal, 279, 409–415.

    CAS  Google Scholar 

  • World Health Organization. (2011). Guidelines for drinking water quality, fourth ed.

  • Yu, W., Reitberger, T., Hjertberg, T., Oderkerk, J., Costa, F. R., Englund, V., Gedde, U. W. (2015). Chlorine dioxide resistance of different phenolic antioxidants in polyethylene, Polymer Degradation and Stability, 111, 1–6.

  • Zeinat Kamal, M., Nashwa, A. H., Fetyan, A., Mohamed, A. I., & El-Nagdy, S. (2008). Biodegradation and detoxification of malathion by of Bacillus Thuringiensis MOS-5. Autralian Journal of Basic and Applied Sciences, 2, 724–732.

    Google Scholar 

  • Zhang, Z., Hong, Q., Xu, J., Zhang, X., & Li, S. (2006). Isolation of fenitrothion-degrading strain Burkholderia sp. FDS-1 and cloning of mpd gene. Biodegradation, 17, 275–283.

    CAS  Google Scholar 

  • Zhang, Y., Xiao, Z., Chen, F., Ge, Y., Wu, J., & Hu, X. (2010). Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment. Ultrasonics Sonochemistry, 17, 72–77.

    CAS  Google Scholar 

  • Zhang, Y., Hou, Y., Chen, F., Xiao, Z., Zhang, J., & Hu, X. (2011). The degradation of chlorpyrifos and diazinon in aqueous solution by ultrasonic irradiation: Effect of parameters and degradation pathway. Chemosphere, 82, 1109–1115.

    CAS  Google Scholar 

  • Zhao, X., & Hwang, H.-M. (2009). A study of the degradation of organophosphorus pesticides in river waters and the identification of their degradation products by chromatography coupled with mass spectrometry. Archives of Environmental Contamination and Toxicology, 56, 646–653.

    CAS  Google Scholar 

  • Zhong, M., Wu, B., Wang, J., Wu, J., & Wei, L. (2006). Effect of chlorine dioxide on ripening of ‘Xiaobai’ apricots. European Food Research and Technology, 223, 791–795.

    CAS  Google Scholar 

Download references

Funding

The authors would like to thank the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 451-03-68/2020-14/200026; 451-03-68/2020-14/200168; 451-03-68/2020-14/200007) and TwinOxide-RS d.o.o. for providing components for the preparation of ClO2 (TWINS preparation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija V. Pergal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pergal, M.V., Kodranov, I.D., Pergal, M.M. et al. Degradation Products, Mineralization, and Toxicity Assessment of Pesticides Malathion and Fenitrothion. Water Air Soil Pollut 231, 433 (2020). https://doi.org/10.1007/s11270-020-04800-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04800-x

Keywords

Navigation