Skip to main content

Advertisement

Log in

SCD1 inhibits HBV replication by regulating autophagy under high lipid conditions

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Chronic hepatitis B virus (HBV) infection remains a significant public health concern worldwide. Several metabolic processes regulate HBV DNA replication, including autophagy and lipid metabolism. In this study, we clarified the effect of lipids on HBV replication and elucidated possible mechanisms. We discovered that lipid metabolic gene expression levels were negatively correlated with the HBV DNA in plasma. Our data showed that fatty acid stimulation significantly reduced HBV DNA, hepatitis B surface antigen (HBsAg), and hepatitis B e antigen (HBeAg) levels in HepG2.2.15 cells, which are human hepatoma cell cultures transfected with HBV DNA. The Stearoyl coenzyme A desaturase 1 (SCD1)-autophagy pathway has also been implicated in inhibiting HBV replication by fatty acids stimulation. SCD1 knockdown deregulates the inhibitory effect of fatty acids on HBV by enhancing autophagy. When 3 methyladenine (3MA) was added, the inhibitory effects of specific autophagy inhibitors eliminated the positive effects of SCD1 knockdown on HBV replication. Our results indicate that SCD1 participates in the regulation of inhibition of HBV replication by fatty acids stimulation through regulating autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available in the jianguoyun repository, https://www.jianguoyun.com/p/Dd_-95gQioqdCxjVwewEIAA

References

  1. Razavi-Shearer D et al (2018) Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study. The Lancet Gastroenterol Hepatol 3:383–403. https://doi.org/10.1016/s2468-1253(18)30056-6

    Article  Google Scholar 

  2. Yuen MF et al (2018) Hepatitis B virus infection. Nat Rev Dis Primers 4:18035. https://doi.org/10.1038/nrdp.2018.35

    Article  PubMed  Google Scholar 

  3. Venook AP, Papandreou C, Furuse J, de Guevara LL (2010) The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist 15(4):5–13. https://doi.org/10.1634/theoncologist.2010-S4-05

    Article  PubMed  Google Scholar 

  4. Lee HW et al (2020) Hepatitis B virus cure: targets and future therapies. Int J Mol Sci. https://doi.org/10.3390/ijms22010213

    Article  PubMed  PubMed Central  Google Scholar 

  5. Terrault NA, Bzowej NH, Chang KM et al (2016) AASLD guidelines for treatment of chronic hepatitis B. Hepatology 63(1):261–283. https://doi.org/10.1002/hep.28156

    Article  PubMed  Google Scholar 

  6. European Association for the Study of the Liver. Electronic address, e. e. e. & European Association for the Study of the, L. EASL (2017) Clinical Practice Guidelines on the management of hepatitis B virus infection. J Hepatol 67(370–398):2017. https://doi.org/10.1016/j.jhep.2017.03.021

    Article  Google Scholar 

  7. Li H et al (2021) Effects of chronic HBV infection on lipid metabolism in non-alcoholic fatty liver disease: a lipidomic analysis. Ann Hepatol 24:100316. https://doi.org/10.1016/j.aohep.2021.100316

    Article  CAS  PubMed  Google Scholar 

  8. Wong VW et al (2012) Hepatitis B virus infection and fatty liver in the general population. J Hepatol 56:533–540. https://doi.org/10.1016/j.jhep.2011.09.013

    Article  PubMed  Google Scholar 

  9. Zhang H et al (2013) Differential regulation of host genes including hepatic fatty acid synthase in HBV-transgenic mice. J Proteome Res 12:2967–2979. https://doi.org/10.1021/pr400247f

    Article  CAS  PubMed  Google Scholar 

  10. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741. https://doi.org/10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  11. Xie M, Yang Z, Liu Y, Zheng M (2018) The role of HBV-induced autophagy in HBV replication and HBV related-HCC. Life Sci 205:107–112. https://doi.org/10.1016/j.lfs.2018.04.051

    Article  CAS  PubMed  Google Scholar 

  12. Prange R (2012) Host factors involved in hepatitis B virus maturation, assembly, and egress. Med Microbiol Immunol 201:449–461. https://doi.org/10.1007/s00430-012-0267-9

    Article  CAS  PubMed  Google Scholar 

  13. Li J et al (2011) Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment. J Virol 85:6319–6333. https://doi.org/10.1128/JVI.02627-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu B et al (2014) Hepatitis B virus X protein inhibits autophagic degradation by impairing lysosomal maturation. Autophagy 10:416–430. https://doi.org/10.4161/auto.27286

    Article  CAS  PubMed  Google Scholar 

  15. Doring T, Zeyen L, Bartusch C, Prange R (2018) Hepatitis B virus subverts the autophagy elongation complex Atg5–12/16L1 and does not require Atg8/LC3 lipidation for viral maturation. J Virol. https://doi.org/10.1128/JVI.01513-17

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ahmed M, ALJohani, Deeba N. Syed, James M. Ntambi, (2017) Insights into Stearoyl-CoA Desaturase-1 Regulation of Systemic Metabolism. Trends Endocrinol Metab 28:831–842. https://doi.org/10.1016/j.tem.2017.10.003

    Article  CAS  Google Scholar 

  17. Sampath H, Ntambi JM (2014) Role of stearoyl-CoA desaturase-1 in skin integrity and whole body energy balance. J Biol Chem 289:2482–2488. https://doi.org/10.1074/jbc.R113.516716

    Article  CAS  PubMed  Google Scholar 

  18. Zhu X et al (2019) Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway. Free Radic Biol Med 141:192–204. https://doi.org/10.1016/j.freeradbiomed.2019.06.019

    Article  CAS  PubMed  Google Scholar 

  19. Huang GM, Jiang QH, Cai C, Qu M, Shen W (2015) SCD1 negatively regulates autophagy-induced cell death in human hepatocellular carcinoma through inactivation of the AMPK signaling pathway. Cancer Lett 358:180–190. https://doi.org/10.1016/j.canlet.2014.12.036

    Article  CAS  PubMed  Google Scholar 

  20. Ding A, Wang C, Zhang L (2019) Effects of miR-101, miR-345 on HBV replication regulation and on the growth of liver cancer cells. Oncol Lett 17:1167–1171. https://doi.org/10.3892/ol.2018.9669

    Article  CAS  PubMed  Google Scholar 

  21. Murai K et al (2018) Peretinoin, an acyclic retinoid, inhibits hepatitis b virus replication by suppressing sphingosine metabolic pathway in vitro. Int J Mol Sci. https://doi.org/10.3390/ijms19020108

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xu L, Yin W, Sun R, Wei H, Tian Z (2014) Kupffer cell-derived IL-10 plays a key role in maintaining humoral immune tolerance in hepatitis B virus-persistent mice. Hepatology 59:443–452. https://doi.org/10.1002/hep.26668

    Article  CAS  PubMed  Google Scholar 

  23. Du Y et al (2022) Toll-like receptor-mediated innate immunity orchestrates adaptive immune responses in HBV infection. Front Immunol. https://doi.org/10.3389/fimmu.2022.965018

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhao X et al (2020) An HBV-encoded miRNA activates innate immunity to restrict HBV replication. J Mol Cell Biol 12(4):263–276. https://doi.org/10.1093/jmcb/mjz104

    Article  CAS  PubMed  Google Scholar 

  25. Kuo TM et al (2009) HBV replication is significantly reduced by IL-6. J Biomed Sci 16:41. https://doi.org/10.1186/1423-0127-16-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chiang CH et al (2013) Association between obesity, hypertriglyceridemia and low hepatitis B viral load. Int J Obes (Lond) 37:410–415. https://doi.org/10.1038/ijo.2012.63

    Article  PubMed  Google Scholar 

  27. Cui Y, Cui XD, Xu M, Fang M, Cai MJ (2019) Serum apolipoprotein C3 levels are negatively associated with hepatitis B virus DNA in HBeAg-negative chronic hepatitis B patients. Lipids Health Dis 18:138. https://doi.org/10.1186/s12944-019-1084-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu D et al (2018) Non-alcoholic hepatic steatosis attenuates hepatitis B virus replication in an HBV-immunocompetent mouse model. Hepatol Int 12(5):438–446. https://doi.org/10.1007/s12072-018-9877-7

    Article  PubMed  Google Scholar 

  29. Wang J et al (2005) Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. Biochem Biophys Res Commun 332:735–742. https://doi.org/10.1016/j.bbrc.2005.05.013

    Article  CAS  PubMed  Google Scholar 

  30. Chang X et al (2010) Berberine reduces methylation of the MTTP promoter and alleviates fatty liver induced by a high-fat diet in rats. J Lipid Res 51:2504–2515. https://doi.org/10.1194/jlr.M001958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sir D et al (2010) The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication. Proc Natl Acad Sci U S A 107:4383–4388. https://doi.org/10.1073/pnas.0911373107

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhong L, Shu W, Dai W, Gao B, Xiong S (2017) Reactive oxygen species-mediated c-Jun NH2-terminal kinase activation Contributes to hepatitis B virus X Protein-induced autophagy via regulation of the beclin-1/Bcl-2 interaction. J Virol. https://doi.org/10.1128/JVI.00001-17

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lin Y et al (2020) Interplay between cellular autophagy and hepatitis B virus replication: a systematic review. Cells 9(9):2101. https://doi.org/10.3390/cells9092101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang Y et al (2017) MicroRNA-141 targets Sirt1 and inhibits autophagy to reduce HBV replication. Cell Physiol Biochem 41:310–322. https://doi.org/10.1159/000456162

    Article  CAS  PubMed  Google Scholar 

  35. Xu Z et al (2002) Enhancement of hepatitis B virus replication by its X protein in transgenic mice. J Virol 76:2579–2584. https://doi.org/10.1128/jvi.76.5.2579-2584.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Keasler VV, Hodgson AJ, Madden CR, Slagle BL (2009) Hepatitis B virus HBx protein localized to the nucleus restores HBx-deficient virus replication in HepG2 cells and in vivo in hydrodynamically-injected mice. Virology 390:122–129. https://doi.org/10.1016/j.virol.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  37. Wang X et al (2020) O-GlcNAcylation modulates HBV replication through regulating cellular autophagy at multiple levels. FASEB J: Off Publ Federation of Am Soc Exp Biol 34(11):14473–14489. https://doi.org/10.1096/fj.202001168RR

    Article  CAS  Google Scholar 

  38. Tian Y et al (2011) Autophagy required for hepatitis B virus replication in transgenic mice. J Virol 85(24):13453–13456. https://doi.org/10.1128/JVI.06064-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sells MA, Chen ML, Acs G (1987) Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci U S A 84(4):1005–1009. https://doi.org/10.1073/pnas.84.4.1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao R et al (2011) Hepatoma cell line HepG2.2.15 demonstrates distinct biological features compared with parental HepG2. World J Gastroenterol 17(9):1152–1159. https://doi.org/10.3748/wjg.v17.i9.1152

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This present work was funded by the Bethune Charitable Foundation (Grant No. B19036GN).

Author information

Authors and Affiliations

Authors

Contributions

CJ and CP: designed the project. XD: carried out the bioinformatics analysis. XS: conducted the experiments. XD and XS: wrote this article together. MH and XG: participated in the data analysis. CW: collected the clinical data. All authors participated in revising and discussing the content of this article and approved the submitted version.

Corresponding authors

Correspondence to Chunmeng Jiang or Chunwen Pu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The clinical data analysis of this study was approved by the Ethics Committee of the Second Affiliated Hospital of Dalian Medical University. The data of bioinformatics analyzed in this study were from public databases. All methods in this study were performed in accordance with the relevant guidelines and regulations.

Consent for publication

Not applicable.

Additional information

Edited by Juergen Richt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 254 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Shi, X., Han, M. et al. SCD1 inhibits HBV replication by regulating autophagy under high lipid conditions. Virus Genes 59, 801–816 (2023). https://doi.org/10.1007/s11262-023-02028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-023-02028-5

Keywords

Navigation