Skip to main content
Log in

Syntheses, structures, in vitro cytotoxicities and DNA-binding properties of four copper complexes based on a phenyl 2-pyridyl ketoxime ligand

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Four complexes [Cu6L64–O)2(dca)2] (1), [Cu3L33–OH)Cl2] (2), [Cu3L33–OH)(OAc)2]·py (3) and [Cu2L4] (4) (HL = phenyl 2-pyridyl ketoxime; dca = dicyanamide anion) have been synthesized and characterized by physicochemical and spectroscopic methods. The structures of all three complexes consist of a single or off-set stacked inverse 9-MC-3 metallacrown formed by three L ligands and three Cu atoms, and all of the Cu atoms are located in square planar or square pyramidal geometries with different apical ligands. In complex 4, four L ligands link two Cu atoms to form a dinuclear structure, and the Cu atoms adopt square pyramidal coordination geometry. The in vitro cytotoxicities against four cell lines (A549, HL-60, HT-29 and HCT-116) have been assayed by colorimetric MTT assay. In addition, all four complexes interact strongly with calf thymus DNA, which may be directly responsible for their antitumor activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Becco L, Rodríguez A, Bravo ME, Prieto MJ, Ruiz-Azuara L, Garat B, Moreno V, Gambino D (2012) J Inorg Biochem 109:49–56

    Article  CAS  Google Scholar 

  2. Kostova I (2006) Anticancer Agents Med Chem 6:19–32

    Article  CAS  Google Scholar 

  3. Ronconi L, Giovagnini L, Marzano C (2005) Inorg Chem 44:1867–1881

    Article  CAS  Google Scholar 

  4. Ronconi L, Marzano C, Zanello P (2006) J Med Chem 49:1648–1657

    Article  CAS  Google Scholar 

  5. Milacic V, Chen D, Ronconi L, Kristin R, Piwowar L, Fregona D, Dou QP (2006) Cancer Res 66:10478–10486

    Article  CAS  Google Scholar 

  6. Soledad BL, Celedonio GR, Isabel GM, Marcos FÁ, Noráh BB (2012) J Inorg Biochem 114:82–93

    Article  Google Scholar 

  7. Fei BL, Li W, Xu WS, Li YG, Long JY, Liu QB, Shao KZ, Su ZM, Sun WY (2013) J Photochem Photobiol B 125:32–41

    Article  CAS  Google Scholar 

  8. Kim E, Rye PT, Essigmann JM, Croy RG (2009) J Inorg Biochem 103:256–261

    Article  CAS  Google Scholar 

  9. Clarke MJ, Zhu F, Frasca DR (1999) Chem Rev 99:2511–2533

    Article  CAS  Google Scholar 

  10. Ott I, Gust R (2007) Arch Pharm 340:117–126

    Article  CAS  Google Scholar 

  11. Ronconi L, Sadler PJ (2007) Coord Chem Rev 251:1633–1648

    Article  CAS  Google Scholar 

  12. Lorena B, Alejandra R, María EB, María JP, Lena RA, Beatriz G, Virtudes M, Dinorah G (2012) J Inorg Biochem 1009:46–56

    Google Scholar 

  13. Chen QY, Huang J, Guo WJ, Gao J (2009) Spectrochim Acta A 72:648–653

    Article  Google Scholar 

  14. Reddy PR, Shilpa A, Raju N, Raghavaiah P (2011) J Inorg Biochem 105:1603–1612

    Article  CAS  Google Scholar 

  15. Jiang M, Li YT, Wu ZY, Liu ZQ, Yan CW (2009) J Inorg Biochem 103:833–844

    Article  CAS  Google Scholar 

  16. Marzano C, Pellei M, Tisato F, Santini C (2009) Anticancer Agents Med Chem 9:185–211

    Article  CAS  Google Scholar 

  17. Tisato F, Marzano C, Porchia M, Pellei M, Santini C (2010) Med Res Rev 30:708–749

    CAS  Google Scholar 

  18. Tardito S, Marchio L (2009) Curr Med Chem 16:1325–1348

    Article  CAS  Google Scholar 

  19. Azuara LR, Gómez MEB (2010) Curr Med Chem 17:3606–3615

    Article  Google Scholar 

  20. Li DD, Tian JL, Gu W, Liu X, Zeng HH, Yan SP (2011) J Inorg Biochem 105:894–901

    Article  CAS  Google Scholar 

  21. Qiao X, Ma ZY, Xie CZ, Xue F, Zhang YW, Xu JY, Qiang ZY, Lou JS, Chen GJ, Yan SP (2011) J Inorg Biochem 105:728–737

    Article  CAS  Google Scholar 

  22. Stamatatos TC, Vlahopoulou JC, Sanakis Y, Raptopoulou CP, Psycharis V, Boudalis AK, Perlepes SP (2004) Inorg Chem Commun 9:814–818

    Article  Google Scholar 

  23. Escuer A, Cordero B, Calvet T (2010) Inorg Chem 49:9752–9754

    Article  CAS  Google Scholar 

  24. Afrati T, Pantazaki AA, Raptopoulou C, Terzisb A, Kessissoglou DP (2010) Dalton Trans 39:765–775

    Article  CAS  Google Scholar 

  25. Mosmann TJ (1983) Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  26. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Cancer Res 48:589–601

    CAS  Google Scholar 

  27. Martin D, Abboud KA, Dahnaen KH (1998) Inorg Chem 37:5811–5815

    Article  CAS  Google Scholar 

  28. Schraml J (2000) Appl Organomet Chem 14:604–610

    Article  CAS  Google Scholar 

  29. Wang F, Yin HD, Yue CH, Cheng S, Hong M (2013) J Organomet Chem 738:35–40

    Article  CAS  Google Scholar 

  30. Reichmann ME, Rice SA, Thomas CA, Doty PJ (1954) J Am Chem Soc 76:3047–3053

    Article  CAS  Google Scholar 

  31. Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Biochemistry 31:9319–9324

    Article  CAS  Google Scholar 

  32. Przyojski JA, Myers NN, Arman HD, Prosvirin A, Dunbar KR, Natarajan M, Krishnan M, Mohan S, Walmsley JA (2013) J Inorg Biochem 127:175–181

    Article  CAS  Google Scholar 

  33. Chakraborty A, Gurunatha KL, Muthulakshmi A, Dutta S, Pati SK, Maji TK (2012) Dalton Trans 41:5879–5888

    Article  CAS  Google Scholar 

  34. Wang HW, Li DC, Hong M, Dou JM (2013) J Organomet Chem 740:1–9

    Article  CAS  Google Scholar 

  35. Afrati T, Zaleski CM, Dendrinou-Samara C, Mezei G, Kampf JW, Pecoraro VL, Kessissoglou DP (2007) Dalton Trans 25:2658–2668

  36. Walz L, Paulus H, Haasem W (1983) Dalton Trans 4:657–664

  37. Dong JF, Li LZ, Xu LLWT, Wang DQ (2011) Chin J Chem 29:259–266

    Article  CAS  Google Scholar 

  38. Sahoo BK, Ghosh KS, Bera R, Dasgupta S (2008) Chem Phys 351:163–169

    Article  CAS  Google Scholar 

  39. Marmur J (1961) J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  40. Wolfe A, Shimer GH Jr, Meehan T (1987) Biochemistry 26:6392–6396

    Article  CAS  Google Scholar 

  41. Baguley BC, Le Bret M (1984) Biochemistry 23:937–943

    Article  CAS  Google Scholar 

  42. Selvakumar B, Rajendiran V, Maheswari PV, Stoeckli-Evans H, Palaniandavar M (2006) J Inorg Biochem 100:316–330

    Article  CAS  Google Scholar 

  43. Lakowicz JR, Weber G (1973) Biochemistry 12:4161–4170

    Article  CAS  Google Scholar 

  44. Raja A, Rajendiran V, Maheswari PU, Balamurugan R, Kilner CA, Halcrow MA, Palaniandavar M (2005) J Inorg Biochem 99:1717–1732

    Article  CAS  Google Scholar 

  45. Hegg EL, Burstyn JN (1998) Coord Chem Rev 173:133–165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge financial support from the National Natural Science Foundation of China (Nos. 21271097, 20671048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dacheng Li or Jianmin Dou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1778 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Lu, J., Li, D. et al. Syntheses, structures, in vitro cytotoxicities and DNA-binding properties of four copper complexes based on a phenyl 2-pyridyl ketoxime ligand. Transition Met Chem 39, 507–517 (2014). https://doi.org/10.1007/s11243-014-9826-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-014-9826-9

Keywords

Navigation