Skip to main content
Log in

Evolutionary multi-mode slime mold optimization: a hyper-heuristic algorithm inspired by slime mold foraging behaviors

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This paper proposes a novel hyper-heuristic algorithm termed evolutionary multi-mode slime mold optimization (EMSMO) for addressing continuous optimization problems. The architecture of a typical hyper-heuristic algorithm comprises two main components: the high-level component and the low-level component. The low-level component contains a set of low-level heuristics (LLHs) and intrinsic problem attributes, while the high-level component manipulates the LLHs to construct the sequence of heuristics. Inspired by the foraging behaviors of slime mold, we designed four easy-implemented search strategies including the search for food, approach food, wrap food, and re-initialization as the LLHs for the low-level component. In the high-level component, we adopt an improvement-based probabilistic selection function that contains two metrics: (1) the probability of improvement and (2) the normalized improvement. The selection function cooperates with the roulette wheel strategy to construct the optimization sequence. To evaluate the performance of our proposal, we implement comprehensive numerical experiments on CEC2013 benchmark functions and three engineering optimization problems. Six classic or advanced evolutionary algorithms and three hyper-heuristic algorithms are applied as competitor algorithms to evaluate the competitiveness of EMSMO. Experimental and statistical results show that EMSMO has broad prospects for solving continuous optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6

Similar content being viewed by others

Data availibility

The research code can be downloaded from https://github.com/RuiZhong961230/EMSMO.

References

  1. Gao K, Cao Z, Zhang L, Chen Z, Han Y, Pan Q (2019) A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems. IEEE/CAA J Autom Sin 6(4):904–916. https://doi.org/10.1109/JAS.2019.1911540

    Article  Google Scholar 

  2. Mouchlis VD, Afantitis A, Serra Fratello M, Papadiamantis AG, Aidinis V, Lynch I, Greco D, Melagraki G (2021) Advances in de novo drug design: from conventional to machine learning methods. Int J Mol Sci. https://doi.org/10.3390/ijms22041676

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhong R, Zhang E, Munetomo M (2023) Cooperative coevolutionary surrogate ensemble-assisted differential evolution with efficient dual differential grouping for large-scale expensive optimization problems. Complex Intell Syst. https://doi.org/10.1007/s40747-023-01262-6

    Article  Google Scholar 

  4. Zhong R, Zhang E, Munetomo M (2023) Cooperative coevolutionary differential evolution with linkage measurement minimization for large-scale optimization problems in noisy environments. Complex Intell Syst 9:4439–4456. https://doi.org/10.1007/s40747-022-00957-6

    Article  Google Scholar 

  5. Zhong R, Peng F, Yu J, Munetomo M (2024) Q-learning based vegetation evolution for numerical optimization and wireless sensor network coverage optimization. Alex Eng J 87:148–163. https://doi.org/10.1016/j.aej.2023.12.028

    Article  Google Scholar 

  6. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Future Gener Comput Syst 111:300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  7. Chen Z, Francis A, Li S, Liao B, Xiao D, Ha TT, Li J, Ding L, Cao X (2022) Egret swarm optimization algorithm: an evolutionary computation approach for model free optimization. Biomimetics. https://doi.org/10.3390/biomimetics7040144

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yu J (2022) Vegetation evolution: an optimization algorithm inspired by the life cycle of plants. Int J Comput Intell Appl. https://doi.org/10.1142/S1469026822500109

    Article  Google Scholar 

  9. Sörensen K, Arnold F, Palhazi Cuervo D (2017) A critical analysis of the “improved clarke and wright savings algorithm’’. Int Trans Oper Res 2:6. https://doi.org/10.1111/itor.12443

    Article  Google Scholar 

  10. Camacho C, Dorigo M, Stützle T (2019) The intelligent water drops algorithm: why it cannot be considered a novel algorithm: a brief discussion on the use of metaphors in optimization. Swarm Intell. https://doi.org/10.1007/s11721-019-00165-y

    Article  Google Scholar 

  11. Tzanetos A, Dounias GD (2020) Nature inspired optimization algorithms or simply variations of metaheuristics? Artif Intell Rev 54:1841–1862. https://doi.org/10.1007/s10462-020-09893-8

    Article  Google Scholar 

  12. Aranha C, Villalón C, Campelo F, Dorigo M, Ruiz R, Sevaux M, Sörensen K, Stützle T (2021) Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm Intell 16:1–6. https://doi.org/10.1007/s11721-021-00202-9

    Article  Google Scholar 

  13. Weyland D (2010) A rigorous analysis of the harmony search algorithm: how the research community can be misled by a “novel’’ methodology. Int J Appl Metaheuristic Comput 1(2):50–60. https://doi.org/10.4018/jamc.2010040104

    Article  Google Scholar 

  14. Sörensen K (2013) Metaheuristics—the metaphor exposed. Int Trans Oper Res. https://doi.org/10.1111/itor.12001

    Article  Google Scholar 

  15. Fisher H (1963) Probabilistic learning combinations of local job-shop scheduling rules. Ind Sched 225–251

  16. Cowling PI, Kendall G, Soubeiga E (2000) A hyperheuristic approach to scheduling a sales summit. In: International Conference on the Practice and Theory of Automated Timetabling

  17. Dowsland KA (1988) Off-the-peg or made-to-measure? timetabling and scheduling with SA and TS. In: Burke E, Carter M (eds) Practice and theory of automated timetabling II. Springer, Berlin, pp 37–52. https://doi.org/10.1007/BFb0055880

    Chapter  Google Scholar 

  18. Cowling P, Kendall G, Soubeiga E (2001) A hyperheuristic approach to scheduling a sales summit. In: Burke E, Erben W (eds) Practice and theory of automated timetabling III. Springer, Berlin, pp 176–190. https://doi.org/10.1007/3-540-44629-X_11

    Chapter  Google Scholar 

  19. Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu R (2013) Hyper-heuristics: a survey of the state of the art. J Oper Res Soc 64(12):1695–1724. https://doi.org/10.1057/jors.2013.71

    Article  Google Scholar 

  20. Choong SS, Wong L-P, Lim CP (2018) Automatic design of hyper-heuristic based on reinforcement learning. Inf Sci 436–437:89–107. https://doi.org/10.1016/j.ins.2018.01.005

    Article  MathSciNet  Google Scholar 

  21. Burke EK, Kendall G, Soubeiga E (2003) A tabu-search hyperheuristic for timetabling and rostering. J Heurist 9(6):451–470. https://doi.org/10.1023/B:HEUR.0000012446.94732.b6

    Article  Google Scholar 

  22. Terashima-Marín H, Ortiz-Bayliss JC, Ross P, Valenzuela-Rendón M (2008) Hyper-heuristics for the dynamic variable ordering in constraint satisfaction problems. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. GECCO ’08. Association for Computing Machinery, New York, pp 571–578. https://doi.org/10.1145/1389095.1389206

  23. Burke E, Kendall G, Mısır M, Özcan E (2012) Monte Carlo hyper-heuristics for examination timetabling. Ann Oper Res 196:73–90. https://doi.org/10.1007/s10479-010-0782-2

    Article  MathSciNet  Google Scholar 

  24. Lin J, Wang Z-J, Li X (2017) A backtracking search hyper-heuristic for the distributed assembly flow-shop scheduling problem. Swarm Evol Comput 36:124–135. https://doi.org/10.1016/j.swevo.2017.04.007

    Article  Google Scholar 

  25. Zhao F, Di S, Cao J, Tang J, Jonrinaldi R (2021) A novel cooperative multi-stage hyper-heuristic for combination optimization problems. Complex Syst Model Simul 1(2):91–108. https://doi.org/10.23919/CSMS.2021.0010

    Article  Google Scholar 

  26. Lin J, Li Y-Y, Song H-B (2022) Semiconductor final testing scheduling using q-learning based hyper-heuristic. Expert Syst Appl 187:115978. https://doi.org/10.1016/j.eswa.2021.115978

    Article  Google Scholar 

  27. Zhong R, Yu J, Chao Z, Munetomo M (2023) Surrogate ensemble-assisted hyper-heuristic algorithm for expensive optimization problems. Int J Comput Intell Syst. https://doi.org/10.1007/s44196-023-00346-y

    Article  Google Scholar 

  28. Liang J, Qu B, Suganthan P, Hernández-Díaz A (2013) Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Technical report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China

  29. Nakagaki T, Yamada H, Toth A (2000) Maze-solving by an amoeboid organism. Nature 407:470. https://doi.org/10.1038/35035159

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Tero A, Takagi S, Saigusa T, Ito K, Bebber DP, Fricker MD, Yumiki K, Kobayashi R, Nakagaki T (2010) Rules for biologically inspired adaptive network design. Science 327(5964):439–442. https://doi.org/10.1126/science.1177894

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  31. Adamatzky A, Akl S, Alonso-Sanz R, van Dessel W, Ibrahim Z, Ilachinski A, Jones J, Kayem AVDM, Martínez GJ, de Oliveira P, Prokopenko M, Schubert T, Sloot P, Strano E, Yang X-S (2013) Are motorways rational from slime mould’s point of view? Int J Parallel Emerg Distrib Syst 28(3):230–248. https://doi.org/10.1080/17445760.2012.685884

    Article  Google Scholar 

  32. Boussard A, Fessel A, Oettmeier C, Briard L, Döbereiner H-G, Dussutour A (2021) Adaptive behaviour and learning in slime moulds: the role of oscillations. Philos Trans R Soc B Biol Sci 376(1820):20190757. https://doi.org/10.1098/rstb.2019.0757

    Article  Google Scholar 

  33. Ternois M, Mougon M, Flahaut E, Dussutour A (2021) Slime molds response to carbon nanotubes exposure: from internalization to behavior. Nanotoxicology 15(4):511–526. https://doi.org/10.1080/17435390.2021.1894615

    Article  CAS  PubMed  Google Scholar 

  34. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  35. Jia H, Peng X, Lang C (2021) Remora optimization algorithm. Expert Syst Appl 185:115665. https://doi.org/10.1016/j.eswa.2021.115665

    Article  Google Scholar 

  36. Seyyedabbasi A, Kiani F (2022) Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems. Eng Comput. https://doi.org/10.1007/s00366-022-01604-x

    Article  Google Scholar 

  37. Chopra N, Mohsin Ansari M (2022) Golden jackal optimization: a novel nature-inspired optimizer for engineering applications. Expert Syst Appl 198:116924. https://doi.org/10.1016/j.eswa.2022.116924

    Article  Google Scholar 

  38. Nakagaki T, Yamada H, Ueda T (2000) Interaction between cell shape and contraction pattern in the physarum plasmodium. Biophys Chem 84:195–204. https://doi.org/10.1016/S0301-4622(00)00108-3

    Article  CAS  PubMed  Google Scholar 

  39. Lipowski A, Lipowska D (2012) Roulette-wheel selection via stochastic acceptance. Physica A 391(6):2193–2196. https://doi.org/10.1016/j.physa.2011.12.004

    Article  ADS  Google Scholar 

  40. In: Arora JS (ed) Introduction to optimum design, 4th edn. Academic Press, Boston (2017). https://doi.org/10.1016/B978-0-12-800806-5.00024-X

  41. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  42. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  43. Bayzidi H, Talatahari S, Saraee M, Lamarche C-P (2021) Social network search for solving engineering optimization problems. Comput Intell Neurosci 2021:1–32. https://doi.org/10.1155/2021/8548639

    Article  Google Scholar 

  44. Storn R (1996) On the usage of differential evolution for function optimization. In: Proceedings of North American Fuzzy Information Processing, pp 519–523. https://doi.org/10.1109/NAFIPS.1996.534789

  45. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol 4, pp 1942–19484. https://doi.org/10.1109/ICNN.1995.488968

  46. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609. https://doi.org/10.1016/j.cma.2020.113609

    Article  ADS  MathSciNet  Google Scholar 

  47. Jackson WG, Özcan E, Drake JH (2013) Late acceptance-based selection hyper-heuristics for cross-domain heuristic search. In: 2013 13th UK Workshop on Computational Intelligence (UKCI), pp 228–235. https://doi.org/10.1109/UKCI.2013.6651310

  48. Özcan E, Kheiri A (2012) A hyper-heuristic based on random gradient, greedy and dominance. In: Computer and information sciences II. Springer, London, pp 557–563. https://doi.org/10.1007/978-1-4471-2155-8_71

  49. Cowling P, Kendall G, Soubeiga E (2002) Hyperheuristics: a tool for rapid prototyping in scheduling and optimisation. In: Applications of evolutionary computing. Springer, Berlin, pp 1–10. https://doi.org/10.1007/3-540-46004-7_1

  50. Van Thieu N, Mirjalili S (2023) MEALPY: an open-source library for latest meta-heuristic algorithms in python. J Syst Archit 139:102871. https://doi.org/10.1016/j.sysarc.2023.102871

    Article  Google Scholar 

  51. Nguyen T (2020) A framework of Optimization Functions using Numpy (OpFuNu) for optimization problems. Zenodo. https://doi.org/10.5281/zenodo.3620960

    Article  Google Scholar 

  52. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70

    MathSciNet  Google Scholar 

  53. Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11):1245–1287. https://doi.org/10.1016/S0045-7825(01)00323-1

    Article  ADS  MathSciNet  Google Scholar 

  54. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  55. Cruz-Duarte JM, Amaya I, Ortiz-Bayliss JC, Conant-Pablos SE, Terashima-Marín H (2020) A primary study on hyper-heuristics to customise metaheuristics for continuous optimisation. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp 1–8 . https://doi.org/10.1109/CEC48606.2020.9185591

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP20K11967 and 21A402 and JST SPRING, Grant Number JPMJSP2119.

Author information

Authors and Affiliations

Authors

Contributions

RZ was involved in conceptualization, methodology, investigation, writing—original draft, writing—review and editing, and funding acquisition. EZ helped in investigation, methodology, formal analysis, and writing—review and editing. MM contributed to writing—review and editing and project administration.

Corresponding author

Correspondence to Rui Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, R., Zhang, E. & Munetomo, M. Evolutionary multi-mode slime mold optimization: a hyper-heuristic algorithm inspired by slime mold foraging behaviors. J Supercomput (2024). https://doi.org/10.1007/s11227-024-05909-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-05909-0

Keywords

Navigation