Skip to main content
Log in

FPGA-based downhole real-time inversion of petrophysical information for NMR-LWD tools with periodic thermal management

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this brief, a real-time inversion of petrophysical information in downhole firmware for nuclear magnetic resonance logging while drilling (NMR-LWD) based on a field-programmable gate array (FPGA) is proposed. Firstly, the inverse problem is introduced, the nonnegative least-squares (NNLS) problem is modeled and solved by the accelerated projected gradient descent (APGD) algorithm. Secondly, the efficient architecture for the APGD accelerator based on look-up tables (LUTs) is used in Intel’s 10M50 FPGA. Finally, a software cooling method based on a multi-core structure and periodic thermal management technology is deployed. The proposed scheme is applied to NMR-LWD, the effectiveness and feasibility of the proposed scheme are verified experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kuang L, Wang Z, Feng C, Zhao P, Mao R, Yu J (2020) Predicting oil saturation of shale-oil reservoirs using nuclear magnetic resonance logs. Interpretation 8(3):35–43. https://doi.org/10.1190/INT-2019-0150.1

    Article  Google Scholar 

  2. Liu Z-d, Zhao J-z, Zhang P, Sun J-x (2018) Evaluating the CBM reservoirs using NMR logging data. Open Geosci 10(1):544–553. https://doi.org/10.1515/geo-2018-0043

    Article  Google Scholar 

  3. Mwachaka SM, Wu A, Fu Q (2019) A review of mud pulse telemetry signal impairments modeling and suppression methods. J Petrol Explor Prod Technol 9(1):779–792. https://doi.org/10.1007/s13202-018-0483-y

    Article  Google Scholar 

  4. Prammer M (2004) Nmr in well logging and hydrocarbon exploration. Appl Magn Reson 25(3–4):637–649

    Article  Google Scholar 

  5. Zhang M, Duan S, Ling Q (2019) Estimation of T2 spectrum in nmr based on OMP algorithm. In: 2019 Chinese Control Conference (CCC), pp 3697–3702. https://doi.org/10.23919/ChiCC.2019.8866138

  6. Testamanti MN, Rezaee R (2019) Considerations for the acquisition and inversion of NMR T2 data in shales. J Petrol Sci Eng 174:177–188. https://doi.org/10.1016/j.petrol.2018.10.109

    Article  Google Scholar 

  7. Guo J, Xie R, Xiao L, Jin G, Gao L (2019) Nuclear magnetic resonance T1–T2 inversion with double objective functions. J Magn Reson 308:106562. https://doi.org/10.1016/j.jmr.2019.07.049

    Article  Google Scholar 

  8. Zhu M, Liu N (2020) Research on NMR noise reduction method based on improved CEEMD. IEEE Access 8:122864–122873. https://doi.org/10.1109/ACCESS.2020.3007223

    Article  Google Scholar 

  9. Chouzenoux E, Moussaoui S, Idier J, Mariette F (2010) Efficient maximum entropy reconstruction of nuclear magnetic resonance T1–T2 spectra. IEEE Trans Signal Process 58(12):6040–6051. https://doi.org/10.1109/TSP.2010.2071870

    Article  MathSciNet  Google Scholar 

  10. Guo J, Xie R (2018) An inversion of NMR echo data based on a normalized iterative hard thresholding algorithm. IEEE Geosci Remote Sens Lett 15(9):1332–1336. https://doi.org/10.1109/LGRS.2018.2844411

    Article  Google Scholar 

  11. Ge X, Chen H, Fan Y, Liu J, Cai J, Liu J (2017) An improved pulse sequence and inversion algorithm of T2 spectrum. Comput Phys Commun 212:82–89. https://doi.org/10.1016/j.cpc.2016.10.012

    Article  Google Scholar 

  12. Bortolotti V, Landi G, Zama F (2021) 2DNMR data inversion using locally adapted multi-penalty regularization. Comput Geosci 25:1215–1228. https://doi.org/10.48550/arXiv.2007.01268

    Article  MathSciNet  Google Scholar 

  13. Lan W, Zhang J, Peng J, Ma Y, Zhou S, Luo X (2020) Distributed thermal management system for downhole electronics at high temperature. Appl Therm Eng 180:115853. https://doi.org/10.1016/j.applthermaleng.2020.115853

    Article  Google Scholar 

  14. Shang B, Hu J, Hu R, Cheng J, Luo X (2018) Modularized thermal storage unit of metal foam/paraffin composite. Int J Heat Mass Transf 125:596–603. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.117

    Article  Google Scholar 

  15. Sinha A, Joshi YK (2011) Downhole electronics cooling using a thermoelectric device and heat exchanger arrangement. J Electron Packag 133(4):041005. https://doi.org/10.1115/1.4005290

    Article  Google Scholar 

  16. Peng J, Cheng J, Wu L, Li Q (2020) Data acquisition and processing circuit for high-temperature logging up to \(200^{\circ }\text{ c }\). Microelectron Int 37(3):131–138. https://doi.org/10.1108/mi-09-2019-0059

    Article  Google Scholar 

  17. Zhang J, Fan Y, Cheng J, Wu L, Xu Y (2018) A programmable pulse sequence generator for high temperature low-field NMR apparatus. Instrum Exp Tech 61(4):506–515. https://doi.org/10.1134/S0020441218040127

    Article  Google Scholar 

  18. Cheng J, Xu Y, Wu L, Wang G (2016) A digital lock-in amplifier for use at temperatures of up to \(200^{\circ } \text{ c }\). Sensors 16(11):1899. https://doi.org/10.3390/s16111899

    Article  Google Scholar 

  19. Ohme B, Johnson M (2009). Deep trek re-configurable processor for data acquisition (RPDA). https://doi.org/10.2172/982893

  20. Watson J, Castro G (2012) High-temperature electronics pose design and reliability challenges. Analog Dialogue 46(2):3–9

    Google Scholar 

  21. Zhang J, Wu D, He D, Feng D, Yin M, Qin X, He J (2017) Extraordinary thermoelectric performance realized in n-type PBTE through multiphase nanostructure engineering. Adv Mater 29(39):1703148. https://doi.org/10.1002/adma.201703148

    Article  Google Scholar 

  22. TEXAS INSTRUMENTS (2012) Digital signal controller TMS320F28335-HT data manual. Dallas, Texas. TEXAS INSTRUMENTS

  23. Li C, Chen Q, Zhang F, Di M, Pan Z, Lu F, Wang A (2020) Under-fet thermal sensor enabling smart full-chip run-time thermal management. IEEE J Electron Devices Soc 8:1242–1248. https://doi.org/10.1109/JEDS.2020.3022730

    Article  Google Scholar 

  24. Memik SO, Mukherjee R, Ni M, Long J (2008) Optimizing thermal sensor allocation for microprocessors. IEEE Trans Comput Aided Des Integr Circuits Syst 27(3):516–527. https://doi.org/10.1109/TCAD.2008.915538

    Article  Google Scholar 

  25. Cochran R, Reda S (2009) Spectral techniques for high-resolution thermal characterization with limited sensor data. In: Proceedings of the 46th Annual Design Automation Conference, pp 478–483. https://doi.org/10.1145/1629911.1630037

  26. Cher C-Y, Kursun E (2011) Exploring the effects of on-chip thermal variation on high-performance multicore architectures. ACM Trans Archit Code Optim (TACO) 8(1):1–22. https://doi.org/10.1145/1629911.1630037

    Article  Google Scholar 

  27. Moreno GA, De Niz D (2012) An optimal real-time voltage and frequency scaling for uniform multiprocessors. In: 2012 IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp 21–30. https://doi.org/10.1109/RTCSA.2012.51. IEEE

  28. Kumar RN, Chandran V, Valarmathi R, Kumar DR (2018) Bitstream compression for high speed embedded systems using separated split look up tables (LUTs). J Comput Theor Nanosci 15(5):1719–1727. https://doi.org/10.1166/jctn.2018.7367

    Article  Google Scholar 

  29. Zhang K, Qi B, Jiang Q, Tang L (2012) Real-time periodic task scheduling considering load-balance in multiprocessor environment. In: 2012 3rd IEEE International Conference on Network Infrastructure and Digital Content, pp 247–250. https://doi.org/10.1109/ICNIDC.2012.6418753. IEEE

  30. He W, Zhang J, Li H, Liu S, Wang Y, Lv B, Wei J (2022) Optimal thermal management of server cooling system based cooling tower under different ambient temperatures. Appl Therm Eng 207:118176. https://doi.org/10.1016/j.applthermaleng.2022.118176

    Article  Google Scholar 

  31. Yin X-C, Han P, Zhang J, Zhang F-Q, Wang N-L (2003) Application of wavelet transform in signal denoising. In: Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693), vol 1, pp 436–441. https://doi.org/10.1109/ICMLC.2003.1264517. IEEE

  32. Zou Y, Xie R, Ding Y, Arad A (2016) Inversion of nuclear magnetic resonance echo data based on maximum entropy inversion of NMR echo data. Geophysics 81(1):1–8. https://doi.org/10.1190/geo2015-0200.1

    Article  Google Scholar 

  33. Ou W, Yuan D, Liu Q, Cao Y (2018) Object tracking based on online representative sample selection via non-negative least square. Multimed Tools Appl 77:10569–10587. https://doi.org/10.1007/s11042-017-4672-3

    Article  Google Scholar 

  34. Jin G, Xie R, Xu H, Guo J, Gao L (2019) A new method of NMR echo data inversion constrained by priori information. J China Univ Petrol (Ed Nat Sci) 43(2):53. https://doi.org/10.3969/j.issn.1673-5005.2019.02.006

    Article  Google Scholar 

  35. Zhou S, Liu J, Sun H (2017) Study of one-dimensional magnetotelluric regularized inversion based on non-negative least squares method. Chin J Eng Geophys 14:253–261

    Google Scholar 

  36. Bertsekas DP (1976) On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans Autom Control 21(2):174–184. https://doi.org/10.1109/TAC.1976.1101194

    Article  MathSciNet  Google Scholar 

  37. Nurvitadhi E, Kwon D, Jafari A, Boutros A, Sim J, Tomson P, Sumbul H, Chen G, Knag P, Kumar R, et al. (2019) Why compete when you can work together: FPGA-ASIC integration for persistent RNNs. In: 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp 199–207. https://doi.org/10.1109/FCCM.2019.00035. IEEE

  38. Fearnley J, Goldberg P, Hollender A, Savani R (2023) The complexity of gradient descent: CLS = PPAD \(\cap\) PLS. J ACM 70(1):1–74. https://doi.org/10.1145/3568163

    Article  MathSciNet  Google Scholar 

  39. Mora J, de la Torre E (2018) Accelerating the evolution of a systolic array-based evolvable hardware system. Microprocess Microsyst 56:144–156. https://doi.org/10.1016/j.micpro.2017.12.001

    Article  Google Scholar 

  40. ITRS2011 (2011) ITRS: the international technology roadmap for semiconductors. https://www.itrs.net/reports.html

  41. Akkurt R, Marsala AF, Seifert D, Al-Harbi A, Buenrostro C, Kruspe T, Thern HF, Kurz G, Blanz M, Kroken A (2009) Collaborative development of a slim LWD NMR tool: from concept to field testing. In: SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, vol All Days, p 126041. https://doi.org/10.2118/126041-MS

  42. Liang W, Fang C, Chong-Yang H, Guo-Hui D, Yi-Ming D (2016) Multi-exponential inversion of T-2 spectrum in NMR based on improved nonlinear fitting. Acta Physica Sin 65(10)

  43. Zhang J, Zhang W, Luo G, Wei X, Liang Y, Cong J (2019) Frequency improvement of systolic array-based CNNS on FPGAS. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp 1–4. https://doi.org/10.1109/ISCAS.2019.8702071

  44. Pertijs MA, Aita AL, Makinwa KA, Huijsing JH (2010) Low-cost calibration techniques for smart temperature sensors. IEEE Sens J 10(6):1098–1105. https://doi.org/10.1109/JSEN.2010.2040730

    Article  Google Scholar 

  45. Dong J, Liping Z, Yanchao Z, Deyu W (2019) Curve fitting and piecewise linear method for z-type temperature sensor. In: 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), pp 686–691. https://doi.org/10.1109/ICEMI46757.2019.9101410

Download references

Acknowledgements

This work was supported in part by the School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, in part by the China-Poland Belt and Road Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, in part by Oilfield Technology Research Institute, China Oilfield Services Limited.

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant 61973132, and in part by the Key Project of Hubei Province under Grant 2021ACB001.

Author information

Authors and Affiliations

Authors

Contributions

CF carried out the implementation of the research technology and the experiment of the proposed algorithm, and made contributions to the writing of the manuscript and the adjustment and modification of the format of the picture. ML designed the images and contributed to the technical implementation, experimental characterization, and analysis of the proposed algorithm. WL provided support for the construction of the experimental platform. JC contributed to the study’s conception, design, and multiple reviews of the manuscript.

Corresponding author

Correspondence to Jingjing Cheng.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Li, M., Liu, W. et al. FPGA-based downhole real-time inversion of petrophysical information for NMR-LWD tools with periodic thermal management. J Supercomput 80, 9640–9662 (2024). https://doi.org/10.1007/s11227-023-05827-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-023-05827-7

Keywords

Navigation