Skip to main content
Log in

Bonding of isovalent homologous actinide and lanthanide pairs with chalcogenide donors: effect of metal f-orbital participation and donor softness

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Chemistry of f-element gains importance in several fields due to the extensive scope of their applications. The aim of this study is to understand the subtle differences in bonding in the structurally similar actinides (An) and their homologous (isovalent) lanthanides (Ln) with several donors, which may lead to their covalency mediated separation. Several experimental and theoretical studies have been reported to address this aspect. However, to the best of our knowledge, a systematic study on the variation in the bonding patterns of the isovalent ‘Ln’ and ‘An’ pairs encompassing the effect of valence f-orbital participation was not attempted. In this study, the minute differences in covalent interactions of these An/Ln pairs having same number of f-electrons with chalcogenide ions of varying softness was probed using relativistic density functional theory (DFT). The f-electronic configurations of the metal ions were observed to play an important role in the f-orbital participation. [AnX]+/[LnX]+ pairs with f0, f7 (half-filled) configurations show resistance to f-orbital directed bonding, unlike the systems having f5, f6 electronic configurations where the f-orbital directed covalency is more pronounced in the [AnX]+ systems. The nature of covalency was identified to be near degeneracy-driven. This enhanced covalency was found to increase with the subsequent increase in the softness of the donor centres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Can be provided as and when required.

References

  1. Christiansen B, Apostolidis C, Carlos R, Courson O, Glatz J-P, Malmbeck R, Pagliosa G, Römer K, Serrano-Purroy D (2004) Advanced aqueous reprocessing in P&T strategies: process demonstrations on genuine fuels and targets. Radiochim Acta 92:475–480

    Article  CAS  Google Scholar 

  2. Cotton S (1991) Lanthanides and actinides. Macmillan International Higher Education

  3. Bünzli J-CG (2019) Lanthanide photonics: shaping the nanoworld. Trends in Chemistry 1:751–762

    Article  Google Scholar 

  4. Weiss CJ, Marks TJ (2010) Organo-f-element catalysts for efficient and highly selective hydroalkoxylation and hydrothiolation. Dalton Trans 39:6576–6588

    Article  CAS  Google Scholar 

  5. Soderholm L (1992) Curium (Z? 96) as a probe for studying high Tc superconductivity. J Alloy Compd 181:13–22

    Article  CAS  Google Scholar 

  6. Layfield RA, Murugesu M (2015) Lanthanides and actinides in molecular magnetism. John Wiley & Sons

    Book  Google Scholar 

  7. Nash KL (1993) A review of the basic chemistry and recent developments in trivalent f-elements separations. Solvent Extr Ion Exch 11:729–768

    Article  CAS  Google Scholar 

  8. Choppin GR (1983) Comparison of the solution chemistry of the actinides and lanthanides. Journal of the Less Common Metals 93:323–330

    Article  CAS  Google Scholar 

  9. Kolarik Z (2008) Complexation and separation of lanthanides (III) and actinides (III) by heterocyclic N-donors in solutions. Chem Rev 108:4208–4252

    Article  CAS  Google Scholar 

  10. Bhattacharyya A, Mohapatra PK (2019) Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N, O’ donor ligands: a review. Radiochimica Acta 107:931–949. https://doi.org/10.1515/ract-2018-3064

  11. Roy LE, Bridges NJ, Martin LR (2013) Theoretical insights into covalency driven f element separations. Dalton Trans 42:2636–2642

    Article  CAS  Google Scholar 

  12. Pace KA, Klepov VV, Berseneva AA, Zur Loye H-C (2021) Covalency in actinide compounds. Chem–A Europ J 27:5835–5841

  13. Minasian SG, Keith JM, Batista ER, Boland KS, Clark DL, Kozimor SA, Martin RL, Shuh DK, Tyliszczak T (2014) New evidence for 5f covalency in actinocenes determined from carbon K-edge XAS and electronic structure theory. Chem Sci 5:351–359

    Article  CAS  Google Scholar 

  14. Neidig ML, Clark DL, Martin RL (2013) Covalency in f-element complexes. Coord Chem Rev 257:394–406

    Article  CAS  Google Scholar 

  15. Scott BL, Joyce JJ, Durakiewicz TD, Martin RL, McCleskey TM, Bauer E, Luo H, Jia Q (2014) High quality epitaxial thin films of actinide oxides, carbides, and nitrides: advancing understanding of electronic structure of f-element materials. Coord Chem Rev 266:137–154

    Article  Google Scholar 

  16. Kalvius G (1986) Mössbauer spectroscopy of actinides: some applications to solid state chemistry. Journal of the Less Common Metals 121:353–378

    Article  CAS  Google Scholar 

  17. Formanuik A, Ariciu A-M, Ortu F, Beekmeyer R, Kerridge A, Tuna F, McInnes EJ, Mills DP (2017) Actinide covalency measured by pulsed electron paramagnetic resonance spectroscopy. Nat Chem 9:578–583

    Article  CAS  Google Scholar 

  18. Solomon EI, Hedman B, Hodgson KO, Dey A, Szilagyi RK (2005) Ligand K-edge X-ray absorption spectroscopy: covalency of ligand–metal bonds. Coord Chem Rev 249:97–129

    Article  CAS  Google Scholar 

  19. Kerridge A (2017) Quantification of f-element covalency through analysis of the electron density: insights from simulation. Chem Commun 53:6685–6695

    Article  CAS  Google Scholar 

  20. Sadhu B, Dolg M (2019) Enhancing actinide (III) over lanthanide (III) selectivity through hard-by-soft donor substitution: exploitation and implication of near-degeneracy-driven covalency. Inorg Chem 58:9738–9748

    Article  CAS  Google Scholar 

  21. Dey S, Velmurugan G, Rajaraman G (2019) How important is the coordinating atom in controlling magnetic anisotropy in uranium(iii) single-ion magnets? A theoretical perspective. Dalton Trans 48:8976–8988

    Article  CAS  Google Scholar 

  22. Platts JA, Baker RJ (2020) A computational investigation of orbital overlap versus energy degeneracy covalency in [UE 2] 2+(E= O, S, Se, Te) complexes. Dalton Trans 49:1077–1088

    Article  CAS  Google Scholar 

  23. Chattaraj S, Bhattacharyya A, Sadhu B (2021) Role of O substitution in expanded porphyrins on uranyl complexation: orbital- and density-based analyses. Inorg Chem 60:15351–15363. https://doi.org/10.1021/acs.inorgchem.1c01981

    Article  CAS  Google Scholar 

  24. Pereira CC, Marsden CJ, Marçalo J, Gibson JK (2011) Actinide sulfides in the gas phase: experimental and theoretical studies of the thermochemistry of AnS (An= Ac, Th, Pa, U, Np, Pu, Am and Cm). Phys Chem Chem Phys 13:12940–12958

    Article  CAS  Google Scholar 

  25. Infante I, Kovacs A, Macchia GL, Shahi ARM, Gibson JK, Gagliardi L (2010) Ionization energies for the actinide mono-and dioxides series, from Th to Cm: theory versus experiment. J Phys Chem A 114:6007–6015

    Article  CAS  Google Scholar 

  26. Averkiev BB, Mantina M, Valero R, Infante I, Kovacs A, Truhlar DG, Gagliardi L (2011) How accurate are electronic structure methods for actinoid chemistry? Theoret Chem Acc 129:657–666

    Article  CAS  Google Scholar 

  27. Kovács A, Konings RJ (2011) Computed vibrational frequencies of actinide oxides AnO0/+/2+ and AnO20/+/2+(An= Th, Pa, U, Np, Pu, Am, Cm). J Phys Chem A 115:6646–6656

    Article  Google Scholar 

  28. Kovacs A, Konings RJ, Gibson JK, Infante I, Gagliardi L (2015) Quantum chemical calculations and experimental investigations of molecular actinide oxides. Chem Rev 115:1725–1759

    Article  CAS  Google Scholar 

  29. Ephritikhine M (2016) Molecular actinide compounds with soft chalcogen ligands. Coord Chem Rev 319:35–62

    Article  CAS  Google Scholar 

  30. Ingram KI, Kaltsoyannis N, Gaunt AJ, Neu MP (2007) Covalency in the f-element–chalcogen bond: computational studies of [M (N (EPH2) 2) 3](M= La, U, Pu; E= O, S, Se, Te). J Alloy Compd 444:369–375

    Article  Google Scholar 

  31. Huang Q-R, Kingham JR, Kaltsoyannis N (2015) The strength of actinide–element bonds from the quantum theory of atoms-in-molecules. Dalton Trans 44:2554–2566

    Article  CAS  Google Scholar 

  32. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5656

    Article  CAS  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  34. Van Lenthe E, Baerends EJ (2003) Optimized Slater-type basis sets for the elements 1–118. J Comput Chem 24:1142–1156

    Article  Google Scholar 

  35. van Lenthe E, Baerends E-J, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99:4597–4610

    Article  Google Scholar 

  36. Van Lenthe E, Ehlers A, Baerends E-J (1999) Geometry optimizations in the zero order regular approximation for relativistic effects. J Chem Phys 110:8943–8953

    Article  Google Scholar 

  37. Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method. Theoret Chim Acta 46:1–10

    Article  CAS  Google Scholar 

  38. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  39. Clark AE, Sonnenberg JL, Hay PJ, Martin RL (2004) Density and wave function analysis of actinide complexes: what can fuzzy atom, atoms-in-molecules, Mulliken, Löwdin, and natural population analysis tell us? J Chem Phys 121:2563–2570

    Article  CAS  Google Scholar 

  40. Bader RF (1985) Atoms in molecules. Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  41. Bader RFW, Bader RF (1990) Atoms in molecules: a quantum theory. Clarendon Press

    Google Scholar 

  42. Bader RF (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  43. Poater J, Sola M, Duran M, Fradera X (2002) The calculation of electron localization and delocalization indices at the Hartree-Fock, density functional and post-Hartree–Fock levels of theory. Theoret Chem Acc 107:362–371

    Article  CAS  Google Scholar 

  44. Weinhold F (2012) Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives. J Comput Chem 33:2363–2379

    Article  CAS  Google Scholar 

  45. Te Velde G, t, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T, (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  46. Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: natural bond orbital analysis program. J Comput Chem 34:1429–1437

    Article  CAS  Google Scholar 

  47. Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci 83:8440–8441

    Article  CAS  Google Scholar 

  48. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  49. Tanti J, Lincoln M, Kerridge A (2018) Decomposition of d-and f-shell contributions to uranium bonding from the quantum theory of atoms in molecules: application to uranium and uranyl halides. Inorganics 6:88

    Article  Google Scholar 

  50. Ingram KI, Tassell MJ, Gaunt AJ, Kaltsoyannis N (2008) Covalency in the f element- chalcogen bond. computational studies of M [N (EPR2) 2] 3 (M= La, Ce, Pr, Pm, Eu, U, Np, Pu, Am, Cm; E= O, S, Se, Te; R= H, iPr, Ph). Inorg Chem 47:7824–7833

    Article  CAS  Google Scholar 

  51. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SC acknowledges the unceasing encouragement provided by Dr. M. S. Kulkarni, Head, Health Physics Division, BARC. Authors are grateful to Dr. Ashokkumar P. (Group Leader, HP Unit, RLG, BARC), Shri R. V. Kolekar (Head, RPS-SF, BARC), Dr. P. K. Mohapatra (Head, RCD, BARC) and Dr. S. Kannan (Director, RC & I Group and Head FCD, BARC). Authors also thank ANUPAM Supercomputing Facility, Bhabha Atomic Research Center, India for the computational resources.

Author information

Authors and Affiliations

Authors

Contributions

Saparya Chattaraj: data curation, formal analysis, investigation, methodology, validation, visualization, writing—original draft; Arunasis Bhattacharyya: conceptualization, investigation, methodology, resources, supervision, writing—review and editing.

Corresponding author

Correspondence to Arunasis Bhattacharyya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1754 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattaraj, S., Bhattacharyya, A. Bonding of isovalent homologous actinide and lanthanide pairs with chalcogenide donors: effect of metal f-orbital participation and donor softness. Struct Chem 34, 307–316 (2023). https://doi.org/10.1007/s11224-022-02094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02094-9

Keywords

Navigation