Skip to main content
Log in

An ab initio investigation of chalcogen–hydride interactions involving HXeH as a chalcogen bond acceptor

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

This work presents an ab initio study on chalcogen–hydride interactions in several binary complexes of chalcogen-containing molecules with HXeH. The geometries, H–Xe stretching frequencies and interaction energies of XCY···HXeH binary complexes are investigated at MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels of theory, where X = O, S, Se, Te and Y = S, Se, Te. For each XCY···HXeH complex, a chalcogen–hydride bond is formed between the negatively charged hydrogen atom of the HXeH molecule and the most positive electrostatic potential region (σ-hole) on the surface of the interacting atom Y. Upon complex formation, a notable blue shift is found for the H–Xe stretch vibration. This result reveals that there is a stronger H(XeH)+ ion-pair character in XCY···HXeH complexes than in free HXeH molecule. In order to shed light on the origin of the chalcogen–hydride interactions, molecular electrostatic potential, quantum theory of atoms in molecules and interaction energy decomposition analyses are performed. Cooperative effects between a conventional chalcogen bond and the chalcogen–hydride interaction in OCY···OCY···HXeH complexes are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  2. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  3. Politzer P, Murray JS, Lane P (2007) Int J Quantum Chem 107:3046–3052

    Article  CAS  Google Scholar 

  4. Politzer P, Murray JS, Concha MC (2008) J Mol Model 14:659–665

    Article  CAS  Google Scholar 

  5. Shields ZP, Murray JS, Politzer P (2010) Int J Quantum Chem 110:2823–2832

    Article  CAS  Google Scholar 

  6. Politzer P, Murray JS (2012) Theor Chem Acc 131:1114

    Article  Google Scholar 

  7. Palusiak M, Grabowski SJ (2007) Struct Chem 18:859–865

    Article  CAS  Google Scholar 

  8. Esrafili MD (2013) Struct Chem 24:39–47

    Article  CAS  Google Scholar 

  9. Esrafili MD, Mohammadirad N (2013) J Mol Model 19:2559–2566

    Article  CAS  Google Scholar 

  10. Esrafili MD, Mahdavinia G, Javaheri M, Sobhi HR (2014) Mol Phys 112:1160–1166

    Article  CAS  Google Scholar 

  11. Minyaev RM, Minkin VI (1998) Can J Chem 76:776–788

    Article  CAS  Google Scholar 

  12. Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  13. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  14. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  15. Wang WZ, Ji BM, Zhang Y (2009) J Phys Chem A 113:8132–8135

    Article  Google Scholar 

  16. Scheiner S (2013) Int J Quantum Chem 113:1609–1620

    Article  CAS  Google Scholar 

  17. Esrafili MD, Mohammadian-Sabet F, Solimannejad M (2014) Struct Chem 25:1197–1205

    Article  CAS  Google Scholar 

  18. Iwaoka M, Takemoto S, Tomoda S (2002) J Am Chem Soc 124:10613–10620

    Article  CAS  Google Scholar 

  19. Meyer EA, Castellano RK, Diederich F (2003) Angew Chem Int Ed 42:1210–1250

    Article  CAS  Google Scholar 

  20. Brezgunova ME, Lieffrig J, Aubert E, Dahaoui S, Fertey P, Lebègue S, Ángyán JG, Fourmigué M, Espinosa E (2013) Cryst Growth Des 13:3283–3289

    Article  CAS  Google Scholar 

  21. Bauzá A, Quiñonero D, Deyà PM, Frontera A (2013) CrystEngComm 15:3137–3144

    Article  Google Scholar 

  22. Li QZ, Li R, Guo P, Li H, Li WZ, Cheng JB (2012) Comput Theor Chem 980:56–61

    Article  CAS  Google Scholar 

  23. Esrafili MD, Vakili M (2014) Mol Phys 112:2746–2752

    Article  CAS  Google Scholar 

  24. Esrafili MD, Mohammadian-Sabet F (2015) J Mol Model 21:65

    Article  Google Scholar 

  25. Azofra LM, Scheiner S (2015) J Chem Phys 142:034307

    Article  Google Scholar 

  26. McDowell SAC (2003) J Chem Phys 118:7283–7287

    Article  CAS  Google Scholar 

  27. Pettersson M, Khriachtchev L, Lignell A, Räsänen M (2002) J Chem Phys 116:2508–2515

    Article  CAS  Google Scholar 

  28. Feldman VI, Sukhov FF (1996) Chem Phys Lett 255:425–430

    Article  CAS  Google Scholar 

  29. Feldman VI, Sukhov FF, Orlov AY (1997) Chem Phys Lett 280:507–512

    Article  CAS  Google Scholar 

  30. Takayanagi T, Asakura T, Takahashi K, Taketsugu Y, Taketsugu T, Noro T (2007) Chem Phys Lett 446:14–19

    Article  CAS  Google Scholar 

  31. Pettersson M, Lundel J, Räsänen M (1995) J Chem Phys 103:205–210

    Article  CAS  Google Scholar 

  32. Pettersson M, Lundel J, Räsänen M (1999) Eur J Inorg Chem 1999:729–737

    Article  Google Scholar 

  33. Lundell J, Pettersson M (1999) Phys Chem Chem Phys 1:1691–1697

    Article  CAS  Google Scholar 

  34. Lundell J, Berski S, Latajka Z (2000) Phys Chem Chem Phys 2:5521–5527

    Article  CAS  Google Scholar 

  35. Lundell J, Berski S, Latajka Z (2003) Chem Phys Lett 371:295–303

    Article  CAS  Google Scholar 

  36. Solimannejad M, Mohammadi Amlashi L, Alkorta I, Elguero J (2006) J Chem Phys Lett 422:226–229

    Article  CAS  Google Scholar 

  37. Blanco F, Solimannejad M, Alkorta I, Elguero J (2008) Theor Chem Account 121:181–186

    Article  CAS  Google Scholar 

  38. Solimannejad M, Malekani M, Alkorta I (2010) J Mol Struct 955:140–144 (THEOCHEM)

    Article  CAS  Google Scholar 

  39. Esrafili MD, Solimannejad M (2013) J Mol Model 19:3767–3777

    Article  CAS  Google Scholar 

  40. Rozas I, Alkorta I, Elguero J (1997) J Phys Chem A 101:4236–4244

    Article  CAS  Google Scholar 

  41. Grabowski SJ, Sokalski WA, Leszczynski J (2006) Chem Phys Lett 422:334–339

    Article  CAS  Google Scholar 

  42. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–11123

    Article  CAS  Google Scholar 

  43. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  44. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  45. Bader RFW (1990) Atoms in molecules-a quantum theory. Oxford University Press, New York

    Google Scholar 

  46. Biegler-Konig F, Schonbohm J, Bayles D (2001) J Comput Chem 22:545–559

    Article  Google Scholar 

  47. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  48. Esrafili MD, Mohammadian-Sabet F (2015) Struct Chem 26:199–206

    Article  CAS  Google Scholar 

  49. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  50. Adhikari U, Scheiner S (2012) Chem Phys Lett 532:31–35

    Article  CAS  Google Scholar 

  51. Lignell A, Lundell J, Khriachtchev L, Räsänen M (2008) J Phys Chem A 112:5486–5494

    Article  CAS  Google Scholar 

  52. Li Q, Wang Y, Li W, Cheng J, Gong B, Sun J (2009) Phys Chem Chem Phys 11:2402–2407

    Article  CAS  Google Scholar 

  53. Esrafili MD, Juyban P, Solimannejad M (2014) Comput Theor Chem 1027:84–90

    Article  CAS  Google Scholar 

  54. Li Q, Qi H, Li R, Liu X, Li W, Cheng J (2012) Phys Chem Chem Phys 14:3025–3030

    Article  CAS  Google Scholar 

  55. Alabugin IV, Manoharan M, Weinhold FA (2004) J Phys Chem A 108:4720–4730

    Article  CAS  Google Scholar 

  56. Su P, Li H (2009) J Chem Phys 131:014102

    Article  Google Scholar 

  57. Koch U, Popelier PLA (1995) J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  58. Lipkowski P, Grabowski SJ, Robinson TL, Leszczynski J (2004) J Phys Chem A 108:10865–10872

    Article  CAS  Google Scholar 

  59. Rozas I, Alkorta I (2000) Elguero. J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi D. Esrafili.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esrafili, M.D., Mohammadian-Sabet, F. & Baneshi, M.M. An ab initio investigation of chalcogen–hydride interactions involving HXeH as a chalcogen bond acceptor. Struct Chem 27, 785–792 (2016). https://doi.org/10.1007/s11224-015-0626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0626-4

Keywords

Navigation