Skip to main content
Log in

Painlevé analysis for a new integrable equation combining the modified Calogero–Bogoyavlenskii–Schiff (MCBS) equation with its negative-order form

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new integrable equation is constructed by combining the recursion operator of the modified Calogero–Bogoyavlenskii–Schiff equation and its inverse recursion operator. The Painlevé is performed to demonstrate the complete integrability of the newly developed equation. Multiple-soliton solutions are depicted as manifestation of the integrability. We further show that this equation enjoys a variety of soliton solutions that include kinks, peakon, cuspon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olver, P.J.: Evolution equations possessing infinitely many symmetries. J. Math. Phys. 18(6), 1212–1215 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Magri, F.: Lectures Notes in Physics. Springer, Berlin (1980)

    Google Scholar 

  3. Baldwin, D., Hereman, W.: Symbolic software for the Painlevé test of nonlinear ordinary and partial differential equations. J. Nonlinear Math. Phys. 13(1), 90–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fokas, A.: Symmetries and integrability. Stud. Appl. Math. 77, 253–299 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Guthrie, G.: Recursion operators and non-local symmetries. Proc. Math. Phys. Sci. 446(1926), 107–114 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property of partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wazwaz, A.M., Xu, G.Q.: Negative-order mKdV equations: multiple soliton and multiple singular soliton solutions. Math. Methods Appl. Sci. 39, 661–667 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Verosky, J.M.: Negative powers of Olver recursion operators. J. Math. Phys. 32(7), 1733–1736 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 43, 13–27 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baldwin, D., Hereman, W.: A symbolic algorithm for computing recursion operators of nonlinear partial differential equations. Int. J. Comput. Math. 87(5), 1094–1119 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baldwin, D., Hereman, W.: Symbolic software for the Painlevé test of nonlinear differential ordinary and partial equations. J. Nonlinear Math. Phys. 13(1), 90–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Poole, D., Hereman, W.: Symbolic computation of conservation laws for nonlinear partial differential equations in multiple space dimensions. J. Symb. Comput. 46(12), 1355–1377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khoury, S.A.: New anstz for obtaining wave solutions of the generalized Camassa–Holm equation. Chaos Solitons Fractals 25(3), 705–710 (2005)

    Article  MathSciNet  Google Scholar 

  14. Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leblond, H., Mihalache, D.: Few-optical-cycle solitons: modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models. Phys. Rev. A 79, 063835 (2009)

    Article  Google Scholar 

  16. Khalique, C.M.: Solutions and conservation laws of Benjamin–Bona–Mahony–Peregrine equation with power-law and dual power-law nonlinearities. Pramana 80, 413–427 (2013)

    Article  Google Scholar 

  17. Kara, A.H., Khalique, C.M.: Nonlinear evolution-type equations and their exact solutions using inverse variational methods. J. Phys. A Math. Gener. 38, 4629–4636 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theorem. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  19. Wazwaz, A.M.: \(N\)-soliton solutions for the Vakhnenko equation and its generalized forms. Phys. Scr. 82, 065006 (2010)

    Article  MATH  Google Scholar 

  20. Wazwaz, A.M.: A new generalized fifth-order nonlinear integrable equation. Phys. Scr. 83, 035003 (2011)

    Article  MATH  Google Scholar 

  21. Wazwaz, A.M.: Distinct variants of the KdV equation with compact and noncompact structures. Appl. Math. Comput. 150, 365–377 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Wazwaz, A.M.: New solitons and kinks solutions to the Sharma–Tasso–Olver equation. Appl. Math. Comput. 188, 1205–1213 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83(1), 591–596 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83(3), 1529–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author sincerely and genuinely thanks Professor Willy Hereman for useful discussions and for using the MACYSMA package to test the Painlev’e property.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Majid Wazwaz.

Ethics declarations

Conflicts of interest

The author declares that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wazwaz, AM. Painlevé analysis for a new integrable equation combining the modified Calogero–Bogoyavlenskii–Schiff (MCBS) equation with its negative-order form. Nonlinear Dyn 91, 877–883 (2018). https://doi.org/10.1007/s11071-017-3916-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3916-0

Keywords

Navigation