Skip to main content

Advertisement

Log in

Polyacrylamide-grafted zinc oxide (ZnO-g-PAM) nanoparticles as a promising nanofiller for thin-film nanocomposite forward osmosis membranes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, hydrophilic polyacrylamide (PAM)-grafted ZnO nanoparticles (ZnO-g-PAM NPs) were prepared and embedded into the polyamide (PA) rejection layer of a thin-film nanocomposite (TFN) membrane to improve the FO performance and perm-selectivity, and antifouling properties. ZnO-g-PAM nanofiller was prepared via atom transfer radical polymerization (ATRP) technique to enhance the nanoparticle hydrophilicity and high dispersibility in aqueous media. The obtained hybrid nanofiller participates in the advantageous of both ZnO and PAM brushes presents a uniform dispersion of ZnO in the PA structure of the ZnO-g-PAM-modified TFN membranes. To enhance the water flux and antifouling properties, different amounts (200, 400, and 600 ppm) of ZnO-g-PAM nanofiller was dispersed in the aqueous phase of the IP process. The effect of ZnO-g-PAM concentration on the hydrophilicity, morphology, and roughness of PA thin layer and FO performance (water flux, reverse salt flux, and membrane selectivity) of the TFN membranes were investigated. In addition, the antifouling tendency and intrinsic properties of the TFN membranes were evaluated in cross-section FO and dead-end RO systems, respectively. The effects of ZnO-g-PAM nanofiller on the IP process cause changes in surface morphology, thickness, and chemical composition of PA layer, improving the antifouling properties. As a results, the fabricated TFN-ZP400 sample was confirmed to has an optimal water flux (20.5 LMH), compared to TFC (12.2 LMH) and other TFN membranes. Meanwhile, salt reverse flux (2.5 gMH) was maintained at a minimum level. Also, the high hydrophilicity of ZnO-g-PAM nanofiller in the PA structure leads to the hydration layer formation on the ZnO-g-PAM-modified PA layer, which minimize the fouling tendency. Therefore, the present study is the first time to consider the implementation of ZnO-g-PAM onto TFN-FO membranes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Y, Li X, Zhao S et al (2019) Thin-film composite membrane with interlayer decorated metal-organic framework UiO-66 toward enhanced forward osmosis performance. Ind Eng Chem Res 58:195–206. https://doi.org/10.1021/acs.iecr.8b04968

    Article  CAS  Google Scholar 

  2. Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science 80-(333):712–717. https://doi.org/10.1126/SCIENCE.1200488/SUPPL_FILE/ELIMELECH.SOM.PDF

    Article  Google Scholar 

  3. Shakeri A, Babaheydari SMM, Salehi H, Razavi SR (2021) Reduction of the structure parameter of forward osmosis membranes by using sodium bicarbonate as pore-forming agent. Langmuir. https://doi.org/10.1021/acs.langmuir.1c01097

    Article  Google Scholar 

  4. Razavi SR, Shakeri A, Mirahmadi Babaheydari SM et al (2020) High-performance thin film composite forward osmosis membrane on tannic Acid/Fe3+ coated microfiltration substrate. Chem Eng Res Des 161:232–239. https://doi.org/10.1016/j.cherd.2020.06.032

    Article  CAS  Google Scholar 

  5. Joafshan M, Shakeri A, Razavi SR, Salehi H (2022) Gas responsive magnetic nanoparticle as novel draw agent for removal of rhodamine B via forward osmosis: High water flux and easy regeneration. Sep Purif Technol 282:119998. https://doi.org/10.1016/J.SEPPUR.2021.119998

    Article  CAS  Google Scholar 

  6. Rastgar M, Bozorg A, Shakeri A (2018) Novel dimensionally controlled nanopore forming template in forward osmosis membranes. Environ Sci Technol 52:2704–2716. https://doi.org/10.1021/acs.est.7b05583

    Article  CAS  Google Scholar 

  7. Xu W, Chen Q, Ge Q (2017) Recent advances in forward osmosis (FO) membrane: chemical modifications on membranes for FO processes. Desalination 419:101–116. https://doi.org/10.1016/J.DESAL.2017.06.007

    Article  CAS  Google Scholar 

  8. Kravath RE, Davis JA (1975) Desalination of sea water by direct osmosis. Desalination 16:151–155. https://doi.org/10.1016/S0011-9164(00)82089-5

    Article  CAS  Google Scholar 

  9. Suwaileh WA, Johnson DJ, Sarp S, Hilal N (2018) Advances in forward osmosis membranes: altering the sub-layer structure via recent fabrication and chemical modification approaches. Desalination 436:176–201. https://doi.org/10.1016/J.DESAL.2018.01.035

    Article  CAS  Google Scholar 

  10. Tiraferri A, Yip NY, Phillip WA et al (2011) Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J Memb Sci 367:340–352. https://doi.org/10.1016/j.memsci.2010.11.014

    Article  CAS  Google Scholar 

  11. Salehi H, Shakeri A, Mahdavi H, Lammertink RGH (2020) Improved performance of thin-film composite forward osmosis membrane with click modified polysulfone substrate. Desalination 496:114731. https://doi.org/10.1016/j.desal.2020.114731

    Article  CAS  Google Scholar 

  12. Shakeri A, Salehi H, Ghorbani F et al (2019) Polyoxometalate based thin film nanocomposite forward osmosis membrane: superhydrophilic, anti-fouling, and high water permeable. J Colloid Interface Sci 536:328–338. https://doi.org/10.1016/j.jcis.2018.10.069

    Article  CAS  Google Scholar 

  13. Yip NY, Tiraferri A, Phillip WA et al (2010) High performance thin-film composite forward osmosis membrane. Environ Sci Technol 44:3812–3818. https://doi.org/10.1021/ES1002555/SUPPL_FILE/ES1002555_SI_001.PDF

    Article  CAS  Google Scholar 

  14. Qiu M, He C (2018) Novel zwitterion-silver nanocomposite modified thin-film composite forward osmosis membrane with simultaneous improved water flux and biofouling resistance property. Appl Surf Sci 455:492–501. https://doi.org/10.1016/J.APSUSC.2018.06.020

    Article  CAS  Google Scholar 

  15. Chiao YH, Sengupta A, Chen ST et al (2019) Zwitterion augmented polyamide membrane for improved forward osmosis performance with significant antifouling characteristics. Sep Purif Technol 212:316–325. https://doi.org/10.1016/J.SEPPUR.2018.09.079

    Article  CAS  Google Scholar 

  16. Zhu J, Zhao X, He C (2015) Zwitterionic SiO2 nanoparticles as novel additives to improve the antifouling properties of PVDF membranes. RSC Adv 5:53653–53659. https://doi.org/10.1039/C5RA05571G

    Article  CAS  Google Scholar 

  17. Liu Z, Hu Y (2016) Sustainable antibiofouling properties of thin film composite forward osmosis membrane with rechargeable silver nanoparticles loading. ACS Appl Mater Interfaces 8:21666–21673. https://doi.org/10.1021/ACSAMI.6B06727/SUPPL_FILE/AM6B06727_SI_001.PDF

    Article  CAS  Google Scholar 

  18. Pejman M, Dadashi Firouzjaei M, Aghapour Aktij S et al (2020) In situ Ag-MOF growth on pre-grafted zwitterions imparts outstanding antifouling properties to forward osmosis membranes. ACS Appl Mater Interfaces 12:36287–36300. https://doi.org/10.1021/ACSAMI.0C12141/SUPPL_FILE/AM0C12141_SI_001.PDF

    Article  CAS  Google Scholar 

  19. Song X, Wang L, Mao L, Wang Z (2016) Nanocomposite membrane with different carbon nanotubes location for nanofiltration and forward osmosis applications. ACS Sustain Chem Eng 4:2990–2997. https://doi.org/10.1021/ACSSUSCHEMENG.5B01575

    Article  CAS  Google Scholar 

  20. Zhu XZ, Wang LF, Zhang F et al (2021) Combined fouling of forward osmosis membrane by alginate and TiO2 nanoparticles and fouling mitigation mechanisms. J Memb Sci 622:119003. https://doi.org/10.1016/J.MEMSCI.2020.119003

    Article  CAS  Google Scholar 

  21. Niksefat N, Jahanshahi M, Rahimpour A (2014) The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination 343:140–146. https://doi.org/10.1016/j.desal.2014.03.031

    Article  CAS  Google Scholar 

  22. Akther N, Yuan Z, Chen Y et al (2020) Influence of graphene oxide lateral size on the properties and performances of forward osmosis membrane. Desalination 484:114421. https://doi.org/10.1016/j.desal.2020.114421

    Article  CAS  Google Scholar 

  23. Shakeri A, Razavi R, Salehi H et al (2019) Thin film nanocomposite forward osmosis membrane embedded with amine-functionalized ordered mesoporous silica. Appl Surf Sci 481:811–818. https://doi.org/10.1016/j.apsusc.2019.03.040

    Article  CAS  Google Scholar 

  24. Yassari M, Shakeri A, Salehi H (2022) Razavi SR (2022) Enhancement in forward osmosis performance of thin-film nanocomposite membrane using tannic acid-functionalized graphene oxide. J Polym Res 292(29):1–10. https://doi.org/10.1007/S10965-022-02894-X

    Article  Google Scholar 

  25. Amini M, Seifi M, Akbari A, Hosseinifard M (2020) Polyamide-zinc oxide-based thin film nanocomposite membranes: towards improved performance for forward osmosis. Polyhedron 179:114362. https://doi.org/10.1016/J.POLY.2020.114362

    Article  Google Scholar 

  26. Akther N, Phuntsho S, Chen Y et al (2019) Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. J Memb Sci 584:20–45. https://doi.org/10.1016/J.MEMSCI.2019.04.064

    Article  CAS  Google Scholar 

  27. Zhu L, Zhu L, Jiang J et al (2014) Hydrophilic and anti-fouling polyethersulfone ultra fi ltration membranes with poly (2 -hydroxyethyl methacrylate ) grafted silica nanoparticles as additive. J Memb Sci 451:157–168. https://doi.org/10.1016/j.memsci.2013.09.053

    Article  CAS  Google Scholar 

  28. Ma W, Chen T, Nanni S et al (2019) Zwitterion-Functionalized graphene oxide incorporated polyamide membranes with improved antifouling properties. Langmuir 35:1513–1525. https://doi.org/10.1021/ACS.LANGMUIR.8B02044/SUPPL_FILE/LA8B02044_SI_001.PDF

    Article  CAS  Google Scholar 

  29. Mahdavi H, Rahimi A (2018) Zwitterion functionalized graphene oxide/polyamide thin film nanocomposite membrane: towards improved anti-fouling performance for reverse osmosis. Desalination 433:94–107. https://doi.org/10.1016/j.desal.2018.01.031

    Article  CAS  Google Scholar 

  30. Rastgar M, Shakeri A, Bozorg A et al (2017) Impact of nanoparticles surface characteristics on pore structure and performance of forward osmosis membranes. Desalination 421:179–189. https://doi.org/10.1016/j.desal.2017.01.040

    Article  CAS  Google Scholar 

  31. Ghalavand R, Mokhtary M, Shakeri A, Alizadeh O (2022) ZnO@PMMA incorporated PSf substrate for improving thin-film composite membrane performance in forward osmosis process. Chem Eng Res Des 177:594–603. https://doi.org/10.1016/J.CHERD.2021.11.017

    Article  CAS  Google Scholar 

  32. Feng Q, Tang D, Lv H et al (2017) Surface-initiated ATRP to modify ZnO nanoparticles with poly(N-isopropylacrylamide): temperature-controlled switching of photocatalysis. J Alloys Compd 691:185–194. https://doi.org/10.1016/J.JALLCOM.2016.08.226

    Article  CAS  Google Scholar 

  33. Xu L, Pan J, Dai J et al (2012) Magnetic ZnO surface-imprinted polymers prepared by ARGET ATRP and the application for antibiotics selective recognition. RSC Adv 2:5571–5579. https://doi.org/10.1039/C2RA20282D

    Article  CAS  Google Scholar 

  34. Verma A, Chaudhary P, Tripathi RK, Yadav BC (2021) The functionalization of polyacrylamide with MoS2nanoflakes for use in transient photodetectors. Sustain Energy Fuels 5:1394–1405. https://doi.org/10.1039/d0se01877e

    Article  CAS  Google Scholar 

  35. Tham DQ, Hoang T, Giang NV et al (2018) Synthesis and characterization of (4-arm-star-PMMA)/PMMA-g-SiO2 hybrid nanocomposites. Green Process Synth 7:391–398. https://doi.org/10.1515/GPS-2018-0016/MACHINEREADABLECITATION/RIS

    Article  CAS  Google Scholar 

  36. Salehi H, Shakeri A, Razavi SR (2022) Polyethersulfone–quaternary graphene oxide–sulfonated polyethersulfone as a high-performance forward osmosis membrane support layer. ACS ES&T Water 2:508–517. https://doi.org/10.1021/ACSESTWATER.1C00249

    Article  CAS  Google Scholar 

  37. Zhang X, Shen L, Guan CY et al (2018) Construction of SiO2@MWNTs incorporated PVDF substrate for reducing internal concentration polarization in forward osmosis. J Memb Sci 564:328–341. https://doi.org/10.1016/J.MEMSCI.2018.07.043

    Article  CAS  Google Scholar 

  38. Khazaie F, Shokrollahzadeh S, Bide Y et al (2021) Forward osmosis using highly water dispersible sodium alginate sulfate coated-Fe3O4 nanoparticles as innovative draw solution for water desalination. Process Saf Environ Prot 146:789–799. https://doi.org/10.1016/J.PSEP.2020.12.010

    Article  CAS  Google Scholar 

  39. Kim SH, Kwak SY, Sohn BH, Park TH (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Memb Sci 211:157–165. https://doi.org/10.1016/S0376-7388(02)00418-0

    Article  CAS  Google Scholar 

  40. Zhao W, Liu H, Liu Y et al (2018) Thin-Film nanocomposite forward-osmosis membranes on hydrophilic microfiltration support with an intermediate layer of graphene oxide and multiwall carbon nanotube. ACS Appl Mater Interfaces 10:34464–34474. https://doi.org/10.1021/ACSAMI.8B10550

    Article  CAS  Google Scholar 

  41. Ma D, Peh SB, Han G, Chen SB (2017) Thin-Film nanocomposite (TFN) Membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection. ACS Appl Mater Interfaces 9:7523–7534. https://doi.org/10.1021/acsami.6b14223

    Article  CAS  Google Scholar 

  42. Zhang W, Yang Z, Kaufman Y, Bernstein R (2018) Surface and anti-fouling properties of a polyampholyte hydrogel grafted onto a polyethersulfone membrane. J Colloid Interface Sci 517:155–165. https://doi.org/10.1016/J.JCIS.2018.01.106

    Article  CAS  Google Scholar 

  43. Wang R, Shi L, Tang CY et al (2010) Characterization of novel forward osmosis hollow fiber membranes. J Memb Sci 355:158–167. https://doi.org/10.1016/J.MEMSCI.2010.03.017

    Article  CAS  Google Scholar 

Download references

Funding

The authors received support from the Islamic Azad University Rasht branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Shakeri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: Self-assembled Functional Nanomaterials and Devices in Asia

Guest Editosr: Zhixiang Wei and Yong Yan

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalavand, R., Mokhtary, M., Shakeri, A. et al. Polyacrylamide-grafted zinc oxide (ZnO-g-PAM) nanoparticles as a promising nanofiller for thin-film nanocomposite forward osmosis membranes. J Nanopart Res 25, 12 (2023). https://doi.org/10.1007/s11051-022-05658-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05658-2

Keywords

Navigation