Skip to main content
Log in

Contactless person recognition using 2D and 3D finger knuckle patterns

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a contactless person verification system based on score level fusion of 2D and 3D finger knuckle patterns. In particular, four types of scores extracted from 3D forefinger FKP (Finger Knuckle Print), 3D middle FKP, 2D forefinger FKP and 2D middle FKP are merged to attain higher accuracy for personal recognition systems. The Tan and Triggs normalization technique (TT) is applied on the depth of 3D FKP image (fore and middle finger) to acquire TT 3D FKP image. Then, a novel and efficient scheme to extract features from TT 3D FKP image, namely Monogenic Local Phase Quantization (MLPQ) is utilized. Also, the MLPQ descriptor is applied on 2D FKP image (fore and middle finger) to extract features. The main idea of MLPQ descriptor is, first, the monogenic filters are applied to decompose TT 3D FKP image or 2D FKP image into three complementary parts: Bandpass, vertical and horizontal Bandpass components. Later, Local Phase Quantization (LPQ) is utilized to encode these complementary components. The encoded components are divided into M × M non-overlapped rectangular sub-regions to calculate their histograms. These histograms sequences are concatenated to build a large feature vector. The kernel fisher analysis (KFA) is used as a dimensionality reduction technique to build the monogenic Local Phase Quantization (MLPQ) feature vector for 3D or 2D FKP recognition. Finally, the cosine distance is used to ascertain the identity of the person. Experimental results using publicly available PolyU FKP dataset show that the presented framework notably attained lower error rates and outperformed the state-of-the-art technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Akhtar Z, Alfarid N (2011) Secure learning algorithm for multimodal biometric systems against spoof attacks. In: Proc. international conference on information and network technology (IPCSIT), pp 52–57

    Google Scholar 

  2. Akhtar Z, Micheloni C, Foresti G (2015) Correlation based fingerprint liveness detection. In: International conference on biometrics (ICB), pp 305–310

    Google Scholar 

  3. Attia A, Akhtar Z, Chalabi NE, Maza S, Chahir Y (2020) Deep rule-based classifier for finger knuckle pattern recognition system. Evolving Systems:1–15. https://doi.org/10.1007/s12530-020-09359-w

  4. Boles A, Rad P (2017) Voice biometrics: deep learning-based voiceprint authentication system. In: 12th system of systems engineering conference (SoSE), pp 1–6. https://doi.org/10.1109/SYSOSE.2017.7994971

    Chapter  Google Scholar 

  5. Chaa M, Boukezzoula N-E, Meraoumia A (2018) A features-level fusion of reflectance and illumination images in finger-knuckle-print identification system. International Journal on Artificial Intelligence Tools 27:1850007. https://doi.org/10.1142/S0218213018500070

    Article  Google Scholar 

  6. Cheng KH, Kumar A (2019) Contactless biometric identification using 3d finger knuckle patterns. IEEE Trans Pattern Anal Mach Intell:1–1. https://doi.org/10.1109/tpami.2019.2904232

  7. Cheng KH, Kumar A (2020) Deep feature collaboration for challenging 3D finger knuckle identification. IEEE Transactions on Information Forensics and Security 16:1158–1173. https://doi.org/10.1109/TIFS.2020.3029906

    Article  Google Scholar 

  8. Daugman J (2004) How iris recognition works. IEEE Trans Circuits Syst Video 14(1):21–30. https://doi.org/10.1109/TCSVT.2003.818350

    Article  Google Scholar 

  9. Frankot R, Chellappa R (1988) A method for enforcing integrability in shape from shading algorithms. IEEE Trans Pattern Anal Mach Intell 10(4):439–451. https://doi.org/10.1109/34.3909

    Article  MATH  Google Scholar 

  10. Fukunaga K (1990) Introduction to statistical pattern recognition, second edn. Academic Press New York

  11. Hong H, Lee M, Park K (2017) Convolutional neural network-based finger-vein recognition using nir image sensors. Sensors (Switzerland) 17(6):1297. https://doi.org/10.3390/s17061297

    Article  Google Scholar 

  12. Hu G, Yang Y, Yi D, Kittler J, Christmas W, Li SZ, Hospedales T (2015) When face recognition meets with deep learning: an evaluation of convolutional neural networks for face recognition. In: Proceedings of the IEEE international conference on computer vision workshops, pp 142–150. https://doi.org/10.1109/ICCVW.2015.58

    Chapter  Google Scholar 

  13. Jain AK, Flynn P, Ross AA (2008) Handbook of biometrics, vol 556. Springer Science & Business Media X. https://doi.org/10.1007/978-0-387-71041-9

    Book  Google Scholar 

  14. Jea T-Y, Govindaraju V (2005) A minutia-based partial fingerprint recognition system. Pattern Recogn 38(10):1672–1684. https://doi.org/10.1016/j.patcog.2005.03.016

    Article  Google Scholar 

  15. Liu C (2006) Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Trans Pattern Anal Mach Intell 28(5):725–737. https://doi.org/10.1109/TPAMI.2006.90

    Article  Google Scholar 

  16. Monteiro J, Albuquerque I, Akhtar Z, Falk T (2019) Generalizable adversarial examples detection based on bi-model decision mismatch. In: IEEE International Conference on Systems, Man and Cybernetics (SMC), pp 2839–2844

    Chapter  Google Scholar 

  17. Morales A, Travieso CM, Ferrer MA, Alonso JB (2011) Improved finger-knuckle-print authentication based on orientation enhancement. Electron Lett 47(6):380–381. https://doi.org/10.1049/el.2011.0156

    Article  Google Scholar 

  18. Ojansivu V, Heikkila J (2008) Blur insensitive texture classification using local phase quantization. In: Proc. ICISP 2008. France, pp 236–243. https://doi.org/10.1007/978-3-540-69905-7_27

    Chapter  Google Scholar 

  19. Reddy N, Rattani A, Derakhshani R (2020) Generalizable deep features for ocular biometrics. Image Vis Comput 103:103996. https://doi.org/10.1016/j.imavis.2020.103996

    Article  Google Scholar 

  20. Schölkopf B, Smola AJ (2002) Learning with kernels. MIT Press, Cambridge

    MATH  Google Scholar 

  21. Shao H, Zhong D, Du X (2019) Efficient deep Palmprint recognition via distilled hashing coding. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp 714–723. https://doi.org/10.1109/CVPRW.2019.00098

    Chapter  Google Scholar 

  22. Simchony T, Chellappa R, Shao M (1990) Direct analytical methods for solving Poisson equations in computer vision problems. IEEE Tran Pattern Anal Mach Intell 12(5):435–446. https://doi.org/10.1109/34.55103

    Article  MATH  Google Scholar 

  23. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650. https://doi.org/10.1109/TIP.2010.2042645

    Article  MathSciNet  MATH  Google Scholar 

  24. The Hong Kong Polytechnic University Contactless 3D Finger Knuckle Images Database (2019), http://www.comp.polyu.edu.hk/~csajaykr/3DKnuckle.htm

  25. Vidhyapriya R (2019) Personal authentication mechanism based on finger knuckle print. J Med Syst 43:232. https://doi.org/10.1007/s10916-019-1332-3

    Article  Google Scholar 

  26. WANG F, HAN J (2007) Iris recognition method using Log-Gabor filtering and feature fusion. Journal of Xian Jiaotong University 41:889–893

    Google Scholar 

  27. Wang J, Wang G (2017) Quality-specific hand vein recognition system. IEEE Transactions on Information Forensics and Security 12(11):2599–2610. https://doi.org/10.1109/TIFS.2017.2713340

    Article  Google Scholar 

  28. Woodham RJ (1980) Photometric method for determining surface orientation from multiple images. Opt Eng 19(1):139–144. https://doi.org/10.1117/12.7972479

    Article  Google Scholar 

  29. Xie S, Shan S, Chen X, Chen J (2010) Fusing local patterns of Gabor magnitude and phase for face recognition. IEEE Trans Image Process 19:1349–1361. https://doi.org/10.1109/TIP.2010.2041397

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang M, Zhang L, Zhang L, Zhang D (2010) Monogenic binary pattern (MBP): a novel feature extraction and representation model for face recognition. In ICPR 2010:2680–2683. https://doi.org/10.1109/ICPR.2010.657

    Article  Google Scholar 

  31. Yang M, Zhang L, Shiu SK, Zhang D (2012) Monogenic binary coding: an efficient local feature extraction approach to face recognition. IEEE Transactions on Information Forensics and Security 7(6):1738–1751. https://doi.org/10.1109/TIFS.2012.2217332

    Article  Google Scholar 

  32. Zhang L, Zhang L, Zhang D (2009) Finger-knuckle-print: a new biometric identifier. In: 16th IEEE international conference on image processing (ICIP). IEEE, pp 1981–1984. https://doi.org/10.1109/ICIP.2009.5413734

    Chapter  Google Scholar 

  33. Zhang L, Zhang L, Zhang D, Zhu H (2010) Online finger-knuckle-print verification for personal authentication. Pattern Recogn 43(7):2560–2571. https://doi.org/10.1016/j.patcog.2010.01.020

    Article  MATH  Google Scholar 

  34. Zhang L, Zhang L, Zhang D, Zhu H (2011) Ensemble of local and global information for finger–knuckle print recognition. Pattern Recogn 44(9):1990–1998. https://doi.org/10.1016/j.patcog.2010.06.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Chaa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaa, M., Akhtar, Z. & Lati, A. Contactless person recognition using 2D and 3D finger knuckle patterns. Multimed Tools Appl 81, 8671–8689 (2022). https://doi.org/10.1007/s11042-022-12111-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12111-y

Keywords

Navigation