Skip to main content

Advertisement

Log in

Fer-mediated activation of the Ras-MAPK signaling pathway drives the proliferation, migration, and invasion of endometrial carcinoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Background

The role of Feline sarcoma-related protein (Fer) in various cancers has been extensively studied, but its specific involvement and underlying mechanisms in the progression of endometrial carcinoma (EC) are yet to be fully understood.

Methods

The expression levels of Fer were assessed in EC tissues and cell lines using real-time quantitative PCR and western blot analysis. CCK-8 assay, Edu staining, transwell assays, and flow cytometry, were conducted to evaluate the impact of Fer on EC cells. Furthermore, a mice xenograft model and immunohistochemistry (IHC) staining were utilized for in vivo analysis. The levels of Ras, pMek1/2, and pErk1/2 were determined by western blot assay. Ras-MAPK signaling pathway inhibitor was utilized to study the regulatory role of Fer on EC cells.

Results

Our findings revealed that Fer exhibited upregulation in both EC tissues and cell lines, concomitant with the activation of the Ras-MAPK signaling pathway. Silencing of Fer resulted in the suppression of cell proliferation, migration, invasion, and Ras-MAPK signaling pathway, while promoted hypoxia-induced apoptosis in RL95-2 and KLE cells. Fer overexpression stimulated cell proliferation, migration, invasion, and Ras-MAPK signaling pathway in Ishikawa and AN3-CA cells, which were reversed after treatment with either Ras or MAPK inhibitor. Moreover, silencing of Fer suppressed tumor growth and downregulated the expression of Ki-67, Ras, pMek1/2, and pErk1/2, but had no significant effect on Mek1/2 and Erk1/2, while upregulated caspase-3 expression in vivo.

Conclusion

In summary, the upregulation of Fer in EC cells resulted in the enhancement of cell proliferation, migration, and invasion through the activation of the Ras-MAPK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data are available from the corresponding author with reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Zhou J, Lin Y, Yang X, Shen B, Hao J, Wang J, Wang J (2022) Metabolic disorders sensitise endometrial carcinoma through endoplasmic reticulum stress. Cell Mol Biol Lett 27:110. https://doi.org/10.1186/s11658-022-00412-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mitamura T, Dong P, Ihira K, Kudo M, Watari H (2019) Molecular-targeted therapies and precision medicine for endometrial cancer. Jpn J Clin Oncol 49:108–120. https://doi.org/10.1093/jjco/hyy159

    Article  PubMed  Google Scholar 

  4. Luna C, Balcacer P, Castillo P, Huang M, Alessandrino F (2021) Endometrial cancer from early to advanced-stage disease: an update for radiologists. Abdom Radiol (NY) 46:5325–5336. https://doi.org/10.1007/s00261-021-03220-7

    Article  PubMed  Google Scholar 

  5. Greer P (2002) Closing in on the biological functions of Fps/Fes and Fer. Nat Rev Mol Cell Biol 3:278–289. https://doi.org/10.1038/nrm783

    Article  CAS  PubMed  Google Scholar 

  6. Ben-Dor I, Bern O, Tennenbaum T, Nir U (1999) Cell cycle-dependent nuclear accumulation of the p94fer tyrosine kinase is regulated by its NH2 terminus and is affected by kinase domain integrity and ATP binding. Cell Growth Differ 10:113–129

    CAS  PubMed  Google Scholar 

  7. Heath RJ, Insall RH (2008) F-BAR domains: multifunctional regulators of membrane curvature. J Cell Sci 121:1951–1954. https://doi.org/10.1242/jcs.023895

    Article  CAS  PubMed  Google Scholar 

  8. Miyata Y, Kanda S, Sakai H, Greer PA (2013) Feline sarcoma-related protein expression correlates with malignant aggressiveness and poor prognosis in renal cell carcinoma. Cancer Sci 104:681–686. https://doi.org/10.1111/cas.12140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu X, Zhang Z, Liang Z, Xie D, Zhang T, Yu D, Zhong C (2017) Downregulation of feline sarcoma-related protein inhibits cell migration, invasion and epithelial-mesenchymal transition via the ERK/AP-1 pathway in bladder urothelial cell carcinoma. Oncol Lett 13:686–694. https://doi.org/10.3892/ol.2016.5459

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Ren Z, Kang X, Zhang L, Li X, Wang Y, Xue T, Shen Y, Liu Y (2009) Identification of tyrosine-phosphorylated proteins associated with metastasis and functional analysis of FER in human hepatocellular carcinoma cells. BMC Cancer 9:366. https://doi.org/10.1186/1471-2407-9-366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ding W, Fan Y, Jia W, Pan X, Han G, Zhang Y, Chen Z, Lu Y, Wang J, Wu J, Wang X (2021) FER regulated by miR-206 promotes hepatocellular carcinoma progression via NF-kappaB signaling. Front Oncol 11:683878. https://doi.org/10.3389/fonc.2021.683878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zoubeidi A, Rocha J, Zouanat FZ, Hamel L, Scarlata E, Aprikian AG, Chevalier S (2009) The Fer tyrosine kinase cooperates with interleukin-6 to activate signal transducer and activator of transcription 3 and promote human prostate cancer cell growth. Mol Cancer Res 7:142–155. https://doi.org/10.1158/1541-7786.MCR-08-0117

    Article  CAS  PubMed  Google Scholar 

  13. Luo X, Yang Z, Liu X, Liu Z, Miao X, Li D, Zou Q, Yuan Y (2019) Clinicopathological significances of Feline sarcoma-related protein and beta2-adrenoceptor expression in pancreatic ductal adenocarcinomas. Int J Clin Exp Pathol 12:3390–3398

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465. https://doi.org/10.1038/nrc1097

    Article  CAS  PubMed  Google Scholar 

  15. Spiegel J, Cromm PM, Zimmermann G, Grossmann TN, Waldmann H (2014) Small-molecule modulation of Ras signaling. Nat Chem Biol 10:613–622. https://doi.org/10.1038/nchembio.1560

    Article  CAS  PubMed  Google Scholar 

  16. Burotto M, Chiou VL, Lee JM, Kohn EC (2014) The MAPK pathway across different malignancies: a new perspective. Cancer 120:3446–3456. https://doi.org/10.1002/cncr.28864

    Article  CAS  PubMed  Google Scholar 

  17. Zhao YL, Zhong SR, Zhang SH, Bi JX, Xiao ZY, Wang SY, Jiao HL, Zhang D, Qiu JF, Zhang LJ, Huang CM, Chen XL, Ding YQ, Ye YP, Liang L, Liao WT (2019) UBN2 promotes tumor progression via the Ras/MAPK pathway and predicts poor prognosis in colorectal cancer. Cancer Cell Int 19:126. https://doi.org/10.1186/s12935-019-0848-4

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Zhao M, Jiang X, Zhang Y, Zhang S, Xu Y, Ren H, Su H, Wang H, Qiu X (2022) Upregulation of KLHL17 promotes the proliferation and migration of non-small cell lung cancer by activating the Ras/MAPK signaling pathway. Lab Invest 102:1389–1399. https://doi.org/10.1038/s41374-022-00806-7

    Article  CAS  PubMed  Google Scholar 

  19. Sangrar W, Shi C, Mullins G, LeBrun D, Ingalls B, Greer PA (2015) Amplified Ras-MAPK signal states correlate with accelerated EGFR internalization, cytostasis and delayed HER2 tumor onset in Fer-deficient model systems. Oncogene 34:4109–4117. https://doi.org/10.1038/onc.2014.340

    Article  CAS  PubMed  Google Scholar 

  20. Ayakannu T, Taylor AH, Konje JC (2020) Selection of endogenous control reference genes for studies on type 1 or type 2 endometrial cancer. Sci Rep 10:8468. https://doi.org/10.1038/s41598-020-64663-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang L, Wan Y, Zhang Z, Jiang Y, Gu Z, Ma X, Nie S, Yang J, Lang J, Cheng W, Zhu L (2021) IGF2BP1 overexpression stabilizes PEG10 mRNA in an m6A-dependent manner and promotes endometrial cancer progression. Theranostics 11:1100–1114. https://doi.org/10.7150/thno.49345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Felix AS, Yang HP, Bell DW, Sherman ME (2017) Epidemiology of endometrial carcinoma: etiologic importance of hormonal and metabolic influences. Adv Exp Med Biol 943:3–46. https://doi.org/10.1007/978-3-319-43139-0_1

    Article  CAS  PubMed  Google Scholar 

  23. Mehazri L, Shpungin S, Bel S, Nir U (2021) Loss of Fer jeopardizes metabolic plasticity and mitochondrial homeostasis in lung and breast carcinoma cells. Int J Mol Sci. https://doi.org/10.3390/ijms22073387

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hao QL, Heisterkamp N, Groffen J (1989) Isolation and sequence analysis of a novel human tyrosine kinase gene. Mol Cell Biol 9:1587–1593. https://doi.org/10.1128/mcb.9.4.1587-1593.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Xiong X, Zhu Q, Zhang J, Chen S, Wang Y, Cao J, Chen L, Hou L, Zhao X, Hao P, Chen J, Zhuang M, Li D, Fan G (2022) FER-mediated phosphorylation and PIK3R2 recruitment on IRS4 promotes AKT activation and tumorigenesis in ovarian cancer cells. Elife. https://doi.org/10.7554/eLife.76183

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fan G, Zhang S, Gao Y, Greer PA, Tonks NK (2016) HGF-independent regulation of MET and GAB1 by nonreceptor tyrosine kinase FER potentiates metastasis in ovarian cancer. Genes Dev 30:1542–1557. https://doi.org/10.1101/gad.284166.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu X, Guo Z, Xu J, Mei X, Bi M, Jiang F, Yu D, Zhong C (2019) Role of feline sarcoma-related protein in the viability and apoptosis of bladder cancer cells. Mol Med Rep 19:5219–5226. https://doi.org/10.3892/mmr.2019.10204

    Article  CAS  PubMed  Google Scholar 

  28. Suh JS, Lee HJ, Nam H, Jo BS, Lee DW, Kim JH, Lee JY, Chung CP, Lee G, Park YJ (2017) Control of cancer stem cell like population by intracellular target identification followed by the treatment with peptide-siRNA complex. Biochem Biophys Res Commun 491:827–833. https://doi.org/10.1016/j.bbrc.2017.05.148

    Article  CAS  PubMed  Google Scholar 

  29. Craig AW, Greer PA (2002) Fer kinase is required for sustained p38 kinase activation and maximal chemotaxis of activated mast cells. Mol Cell Biol 22:6363–6374. https://doi.org/10.1128/mcb.22.18.6363-6374.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kogata N, Masuda M, Kamioka Y, Yamagishi A, Endo A, Okada M, Mochizuki N (2003) Identification of Fer tyrosine kinase localized on microtubules as a platelet endothelial cell adhesion molecule-1 phosphorylating kinase in vascular endothelial cells. Mol Biol Cell 14:3553–3564. https://doi.org/10.1091/mbc.e03-02-0080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu Q, Ge Q, Zhou Y, Yang B, Yang Q, Jiang S, Jiang R, Ai Z, Zhang Z, Teng Y (2020) MELK promotes endometrial carcinoma progression via activating mTOR signaling pathway. EBioMedicine 51:102609. https://doi.org/10.1016/j.ebiom.2019.102609

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL (2020) ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 19:1997–2007. https://doi.org/10.3892/etm.2020.8454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Z, Kyo S, Takakura M, Tanaka M, Yatabe N, Maida Y, Fujiwara M, Hayakawa J, Ohmichi M, Koike K, Inoue M (2000) Progesterone regulates human telomerase reverse transcriptase gene expression via activation of mitogen-activated protein kinase signaling pathway. Cancer Res 60:5376–5381

    CAS  PubMed  Google Scholar 

  34. Zhou C, Steplowski TA, Dickens HK, Malloy KM, Gehrig PA, Boggess JF, Bae-Jump VL (2013) Estrogen induction of telomerase activity through regulation of the mitogen-activated protein kinase (MAPK) dependent pathway in human endometrial cancer cells. PLoS ONE 8:e55730. https://doi.org/10.1371/journal.pone.0055730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li D, Liu Z, Zhao W, Zheng X, Wang J, Wang E (2013) A small-molecule induces apoptosis and suppresses metastasis in pancreatic cancer cells. Eur J Pharm Sci 48:658–667. https://doi.org/10.1016/j.ejps.2012.12.023

    Article  CAS  PubMed  Google Scholar 

  36. Guo N, Liu Z, Zhao W, Wang E, Wang J (2016) Small molecule APY606 displays extensive antitumor activity in pancreatic cancer via impairing Ras-MAPK signaling. PLoS ONE 11:e0155874. https://doi.org/10.1371/journal.pone.0155874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Delire B, Starkel P (2015) The Ras/MAPK pathway and hepatocarcinoma: pathogenesis and therapeutic implications. Eur J Clin Invest 45:609–623. https://doi.org/10.1111/eci.12441

    Article  CAS  PubMed  Google Scholar 

  38. Liu F, Tai Y, Ma J (2018) LncRNA NEAT1/let-7a-5p axis regulates the cisplatin resistance in nasopharyngeal carcinoma by targeting Rsf-1 and modulating the Ras-MAPK pathway. Cancer Biol Ther 19:534–542. https://doi.org/10.1080/15384047.2018.1450119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang X, Zheng Y, Fan Q, Zhang X, Shi Y (2014) siRNA blocking the RAS signalling pathway and inhibits the growth of oesophageal squamous cell carcinoma in nude mice. Cell Biochem Funct 32:625–629. https://doi.org/10.1002/cbf.3034

    Article  CAS  PubMed  Google Scholar 

  40. Mo S, Fang D, Zhao S, Thai Hoa PT, Zhou C, Liang T, He Y, Yu T, Chen Y, Qin W, Han Q, Su H, Zhu G, Luo X, Peng T, Han C (2022) Down regulated oncogene KIF2C inhibits growth, invasion, and metastasis of hepatocellular carcinoma through the Ras/MAPK signaling pathway and epithelial-to-mesenchymal transition. Ann Transl Med. 10:151. https://doi.org/10.21037/atm-21-6240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research is supported by Hainan Natural Science Foundation Youth Foundation project (821QN392) and National Natural Science Foundation to cultivate 530 Project Youth Projects (2021QNXM20).

Author information

Authors and Affiliations

Authors

Contributions

(I) Study design/planning: LS; (II) Data collection/entry: LS, CZ, XL, KC; (III) Data analysis/statistics: LS, CZ; (IV) Data interpretation: LS, CZ, GZ, LH; (V) Preparation of manuscript: LS; (VI) Literature analysis/search: All authors; (VII) Funding acquisition: Hainan Natural Science Foundation Youth Foundation project; (VIII) Final approval of manuscript: All authors.

Corresponding author

Correspondence to Lan Hong.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

All the study participants signed an informed consent for the inclusion in the study. The study was approved by Ethical Committee of Hainan General Hospital (No. 2022-597).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Zhang, C., Cui, K. et al. Fer-mediated activation of the Ras-MAPK signaling pathway drives the proliferation, migration, and invasion of endometrial carcinoma cells. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04890-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04890-1

Keywords

Navigation