Skip to main content
Log in

CQR-based inference for the infinite-variance nearly nonstationary autoregressive models

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider the nearly nonstationary autoregressive model yt = qnyt−1+ut, where qn = 1−c/n, c is a fixed constant, and {ut, t ≽ 1} is a sequence of innovations belonging to the domain of attraction of a stable distribution with index 0 < α < 2. We construct a composite quantile regression estimator for the autoregressive coefficient and establish the asymptotic distribution of this estimator under some mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Anderson, On asymptotic distributions of estimates of parameters of stochastic difference equations, Ann. Math. Stat., 30:676–687, 1959.

    Article  MathSciNet  Google Scholar 

  2. B. Buchmann and N.H. Chan, Asymptotic theory of least squares estimators for nearly unstable processes under strong dependence, Ann. Stat., 35:2001–2017, 2007.

    Article  MathSciNet  Google Scholar 

  3. N.H. Chan and C.Z.Wei, Asymptotic inference for nearly non-stationaryAR(1) processes, Ann. Stat., 15:1050–1063, 1987.

    Article  Google Scholar 

  4. N.H. Chan and R.M. Zhang, Inference for nearly nonstationary processes under strong dependence with infinite variance, Stat. Sin., 19:925–947, 2009.

    MathSciNet  MATH  Google Scholar 

  5. N.H. Chan and R.M. Zhang, Quantile inference for near-integrated autoregressive time series under infinite variance and strong dependence, Stochastic Processes Appl., 119:4124–4148, 2009.

    Article  MathSciNet  Google Scholar 

  6. R.A. Davis, K. Knight, and J. Liu, M-estimation for autoregressions with infinite variance, Stochastic Processes Appl., 40:145–180, 1992.

    Article  MathSciNet  Google Scholar 

  7. L. Giraitis and P.C.B. Phillips, Uniform limit theory for stationary autoregression, J. Time Ser. Anal., 27:51–60, 2006.

    Article  MathSciNet  Google Scholar 

  8. J. Guo, M. Tang, M. Tian, and K. Zhu, Variable selection in high-dimensional partially linear additive models for composite quantile regression, Comput. Stat. Data Anal., 65:56–67, 2013.

    Article  MathSciNet  Google Scholar 

  9. K.S. Hwang and T.X. Pang, Asymptotic inference for nearly nonstationary AR(1) processes with possibly infinite variance, Stat. Probab. Lett., 79:2374–2379, 2009.

    Article  MathSciNet  Google Scholar 

  10. B. Kai, R. Li, and H. Zou, Local composite quantile regression smoothing: An efficient and safe alternative to local polynomial regression, J. R. Stat. Soc., Ser. B, Stat. Methodol., 72:49–69, 2010.

  11. R. Koenker and G. Bassett, Regression quantiles, Econometrica, 46:33–49, 1978.

    Article  MathSciNet  Google Scholar 

  12. J. Markevičiūtė, Functional limit theorems in Hölder space for residuals of nearly nonstationary AR(1) process, Probab. Math. Stat., 37:163–183, 2017.

  13. J. Markevičiūtė, C. Suquet, and A. Račkauskas, Functional central limit theorems for sums of nearly nonstationary processes, Lith. Math. J., 52:282–296, 2012.

  14. L. Peng N.H. Chan and Y. Qi, Quantile inference for near-integrated autoregressive time series with infinite variance, Stat. Sin., 16:15–28, 2006.

    MathSciNet  MATH  Google Scholar 

  15. P.C.B. Phillips, Towards a unified asymptotic theory for autoregression, Biometrika, 74:535–547, 1987.

    Article  MathSciNet  Google Scholar 

  16. P.C.B. Phillips and T. Magdalinos, Limit theory for moderate deviations from a unit root, J. Econom., 136:115–130, 2007.

    Article  MathSciNet  Google Scholar 

  17. S. Resnick, Point processes, regular variation and weak convergence, Adv. Appl. Probab., 18:66–138, 1986.

    Article  MathSciNet  Google Scholar 

  18. S. Resnick and P. Greenwood, A bivariate stable characterization and domains of attraction, J. Multivariate Anal., 9: 206–221, 1979.

    Article  MathSciNet  Google Scholar 

  19. M. Wang, Z. Chen, and C.D. Wang, Composite quantile regression for GARCH models using high-frequency data, Econometrics and Statistics, 7:115–133, 2018.

    Article  MathSciNet  Google Scholar 

  20. J.S. White, The limiting distribution of the serial correlation coefficient in the explosive case, Ann. Math. Stat., 29: 1188–1197, 1958.

    Article  MathSciNet  Google Scholar 

  21. Y.Z. Yuan and R.M. Zhang, Estimation for nearly unit root processes with GARCH errors, Appl. Math., J. Chin. Univ., 25:297–306, 2010.

  22. B. Zhao, Z. Chen, G. Tao, and M. Chen, Composite quantile regression estimation for P-GARCH processes, Sci. China, Math., 59:977–998, 2016.

  23. H. Zou and M. Yuan, Composite quantile regression and the oraclemodel selection theory, Ann. Stat., 36:1108–1126, 2008.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajuan Dong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project was supported by the characteristic & preponderant discipline of key construction universities in Zhejiang province (Zhejiang Gongshang University - Statistics) and Collaborative Innovation Center of Statistical Data Engineering Technology & Application.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, KA., Ni, J. & Dong, Y. CQR-based inference for the infinite-variance nearly nonstationary autoregressive models. Lith Math J 62, 1–9 (2022). https://doi.org/10.1007/s10986-021-09539-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-021-09539-4

MSC

Keywords

Navigation