Skip to main content
Log in

Comparative study of computational frameworks for magnetite and carbon nanotube-based nanofluids in enclosure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Multi-wall carbon nanotubes (MWCNTs) characterize innovative nanoparticles that progress the thermal characteristics of base fluids, compelling them appropriate for utilizing in renewable energy, heat exchanger, and automotive engineering. In this analysis, the buoyancy-driven flow in a superposed spherical enclosure packed with amalgamated porous (Fe3O4-MWCNTs/H2O) hybrid nanofluid layers was explored by employing the procedure of Levenberg–Marquardt with backpropagated artificial neural networks (LMB-ANN) for two temperature models. The exterior wall of enclosure was kept at a constant frigid condition, while the inner surface received partial heating to create a heat flux. The flow situation within the porous cavity was modeled using the Darcy–Boussinesq model. To evaluate the model equations, the control volume-based finite element method (CVFEM) was adopted. The results obtained from numerical method explain the reference data of LMB-ANN for several situations of porous cavity by modifying model variables. By varying the model parameters within the scope of the present numerical approach, a set of proposed data LMB-ANN is generated for cases. The proposed model has equaled for perfection after the numerical findings of various instances have been evaluated using the LMB-ANN train, test, and validating strategy. Several error graphs and statistical visualizations focused on mean square errors, error histogram, and regression assessment are designed to support the proposed methodology (LMB-NN). The proposed approach (LMB-ANN) has been verified based on the correlation of the suggested and benchmark (numerical) outputs, with a validity level ranging from 10–02 to 10–09. Also, the principal findings revealed that elevating the Rayleigh and Darcy numbers improves energy transmission inside the enclosure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

MWCNT:

Multi-wall carbon nanotubes

MHD:

Magnetohydrodynamics

ML:

Multi-layer

ANN:

Artificial neural network

LMB:

Levenberg–Marquardt backpropagated

MSE:

Mean squared error

CVFEM:

Control volume finite element method

AE:

Absolute error

\(X,Y\) :

Space coordinates

\(B\) :

Magnetic field [Tesla]

\(p\) :

Pressure

\(K_{{\text{p}}}\) :

Permeability \(\left( {{\text{m}}^{2} } \right)\)

\(q_{{{\text{Hnfs}}}}\) :

Interface heat transfer coefficient

\(c,d\) :

Major- and minor-axis elliptic cylinder

\(e_{1}\) :

Eccentricity

\(T_{{\text{c}}} ,T_{{\text{h}}}\) :

Temperature of cool and hot surface

\(T\) :

Temperature of liquid (K)

\(k\) :

Thermal conductivity (\({\text{Wm}}^{ - 1} \;{\text{K}}^{ - 1}\))

\(g\) :

Gravitational acceleration

\(C_{{\text{p}}}\) :

Specific heat \(\left( {{\text{J}}\;{\text{kg}}^{ - 1} \;{\text{K}}^{ - 1} } \right)\)

\({\text{{\rm N}u}}_{{{\text{Loc}}}}\) :

Local Nusselt number

\({\text{{\rm N}u}}_{{{\text{Avg}}}}\) :

Average Nusselt number

\({\text{Ha}}\) :

Hartmann number

\({\text{Ra}}\) :

Rayleigh number

\({\text{Da}}\) :

Darcy number

\(Q\) :

Surface heat transmission coefficient

\(\delta_{{\text{h}}}\) :

Ratio of modified thermal conductivity

\(f\) :

Activation function

\(W\) :

Mass of neuron

\(\mu\) :

Dynamic viscosity \(\left( {{\text{mPa}}} \right).\)

\(\beta\) :

Thermal expansion

\(\rho\) :

Nanofluid density \(\left( {{\text{kg}}\;{\text{m}}^{ - 3} } \right).\)

\(\psi\) :

Stream function

\(\sigma\) :

Electrical conductivity

\(\phi\) :

Volume fraction of nanoparticle

\(\Theta\) :

Dimensional heat profiles

\(\lambda\) :

Porosity

hnf:

Hybrid nanofluid

nf:

Nanofluid

bf:

Base fluid

s:

Solid nanoparticles

References

  1. Ellahi R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl Math Model. 2013;37(3):1451–67.

    Article  MathSciNet  Google Scholar 

  2. Zeeshan A, Ahmad M, Ellahi R, Sait SM, Shehzad N. Hydromagnetic flow of two immiscible nanofluids under the combined effects of Ohmic and viscous dissipation between two parallel moving plates. J Magn Magn Mater. 2023;575:170741.

    Article  CAS  Google Scholar 

  3. Riaz A, Ellahi R, Sait SM, Muhammad T. Magnetized Jeffrey nanofluid with energy loss in between an annular part of two micro non-concentric pipes. Energy Sour Part A Recovery Util Environ Effects. 2022;44(3):8314–33.

    CAS  Google Scholar 

  4. Khan AA, Zahra B, Ellahi R, Sait SM. Analytical solutions of peristalsis flow of non-Newtonian Williamson fluid in a curved micro-channel under the effects of electro-osmotic and entropy generation. Symmetry. 2023;15(4):889.

    Article  ADS  Google Scholar 

  5. Manzoor AT, Saghir MZ. Heat transfer enhancement in multiple pipes configuration using different fluid mixtures: a numerical approach. Int J Thermofluids. 2021;10:100088.

    Article  CAS  Google Scholar 

  6. Abdelsalam SI, Bhatti MM. Unraveling the nature of nano-diamonds and silica in a catheterized tapered artery: highlights into hydrophilic traits. Sci Rep. 2023;13(1):5684.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Uddin MJ, Rahman MM. Numerical computation of natural convective heat transport within nanofluids filled semi-circular shaped enclosure using nonhomogeneous dynamic model. Therm Sci Eng Progress. 2017;1:25–38.

    Article  Google Scholar 

  8. Sheikholeslami M, Rokni HB. CVFEM for effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of non-equilibrium model. J Mol Liq. 2018;254:446–62.

    Article  CAS  Google Scholar 

  9. Shaheen S, Maqbool K, Ellahi R, Sait SM. Heat transfer analysis of tangent hyperbolic nanofluid in a ciliated tube with entropy generation. J Therm Anal Calorim. 2021;144:2337–46.

    Article  CAS  Google Scholar 

  10. Yang L, Du K. A comprehensive review on the natural, forced, and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities. J Therm Anal Calorim. 2020;140(5):2033–54.

    Article  CAS  Google Scholar 

  11. Roslan R, Saleh H, Hashim I. Effect of rotating cylinder on heat transfer in a square enclosure filled with nanofluids. Int J Heat Mass Transf. 2012;55(23–24):7247–56.

    Article  CAS  Google Scholar 

  12. Wang X, Rasool G, Shafiq A, Thumma T, Al-Mdallal QM. Numerical study of hydrothermal and mass aspects in MHD driven Sisko-nanofluid flow including optimization analysis using response surface method. Sci Rep. 2023;13(1):7821.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Al-Kouz W, Aissa A, Koulali A, Jamshed W, Moria H, Nisar KS, Yahia IS. MHD darcy-forchheimer nanofluid flow and entropy optimization in an odd-shaped enclosure filled with a (MWCNT-Fe3O4/water) using Galerkin finite element analysis. Sci Rep. 2021;11(1):22635.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abdelsalam SI, Alsharif AM, Abd Elmaboud Y, Abdellateef AI. Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis. Heliyon. 2023;9(5):1–18.

    Article  Google Scholar 

  15. Zeeshan A, Khan MI, Ellahi R, Marin M. Computational intelligence approach for optimising MHD Casson ternary hybrid nanofluid over the shrinking sheet with the effects of radiation. Appl Sci. 2023;13(17):9510.

    Article  CAS  Google Scholar 

  16. Khan LA, Raza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel: a novel mode for heat transfer enhancement. J Therm Anal Calorim. 2020;140:879–90.

    Article  CAS  Google Scholar 

  17. Kocić M, Stamenković Ž, Petrović J, Bogdanović-Jovanović J. MHD micropolar fluid flow in porous media. Adv Mech Eng. 2023;15(6):16878132231178436.

    Article  Google Scholar 

  18. Rostami S, Toghraie D, Esfahani MA, Hekmatifar M, Sina N. Predict the thermal conductivity of SiO2/water–ethylene glycol (50:50) hybrid nanofluid using artificial neural network. J Therm Anal Calorim. 2021;143(2):1119–28.

    Article  CAS  Google Scholar 

  19. Rostami S, Toghraie D, Shabani B, Sina N, Barnoon P. Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs). J Therm Anal Calorim. 2021;143(2):1097–105.

    Article  CAS  Google Scholar 

  20. Ruhani B, Toghraie D, Hekmatifar M, Hadian M. Statistical investigation for developing a new model for rheological behavior of ZnO–Ag (50%–50%)/Water hybrid Newtonian nanofluid using experimental data. Phys A. 2019;525:741–51.

    Article  CAS  Google Scholar 

  21. Gul T, Ali B, Alghamdi W, Nasir S, Saeed A, Kumam P, Jawad M. Mixed convection stagnation point flow of the blood-based hybrid nanofluid around a rotating sphere. Sci Rep. 2021;11(1):7460.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mehryan SAM, Izadpanahi E, Ghalambaz M, Chamkha AJ. Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid. J Therm Anal Calorim. 2019;137(3):965–82.

    Article  CAS  Google Scholar 

  23. Abdelsalam SI, Magesh A, Tamizharasi P, Zaher AZ. Versatile response of a Sutterby nanofluid under activation energy: Hyperthermia therapy. Int J Numer Methods Heat Fluid Flow. 2023. https://doi.org/10.1108/HFF-04-2023-0173.

    Article  Google Scholar 

  24. Chadi K, Battira MM, Saleh MS, Belghar N, Lachi M, Chamkha AJ. Impact of geometric shape of cavity on heat exchange using Cu–Al2O3–H2O hybrid nanofluid. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2134606.

    Article  Google Scholar 

  25. Bejawada SG, Nandeppanavar MM. Effect of thermal radiation on magnetohydrodynamics heat transfer micropolar fluid flow over a vertical moving porous plate. Exp Comput Multiph Flow. 2023;5(2):149–58.

    Article  Google Scholar 

  26. Aslani ΚE, Sarris IE. Effect of micromagnetorotation on magnetohydrodynamic Poiseuille micropolar flow: analytical solutions and stability analysis. J Fluid Mech. 2021;920:A25.

    Article  MathSciNet  CAS  Google Scholar 

  27. Aslani KE, Benos L, Tzirtzilakis E, Sarris IE. Micromagnetorotation of MHD micropolar flows. Symmetry. 2020;12(1):148.

    Article  ADS  Google Scholar 

  28. Nasir S, Berrouk AS, Gul T, Zari I. Chemically radioactive unsteady nonlinear convective couple stress Casson hybrid nanofluid flow over a gyrating sphere. J Therm Anal Calorim. 2023;148:1–13.

    Article  Google Scholar 

  29. Nasir S, Shah Z, Islam S, Bonyah E, Gul T. Darcy Forchheimer nanofluid thin film flow of SWCNTs and heat transfer analysis over an unsteady stretching sheet. AIP Adv. 2019;9(1):1–15.

    Article  Google Scholar 

  30. Shi L, Zhang S, Arshad A, Hu Y, He Y, Yan Y. Thermo-physical properties prediction of carbon-based magnetic nanofluids based on an artificial neural network. Renew Sustain Energy Rev. 2021;149:111341.

    Article  CAS  Google Scholar 

  31. Elsheikh AH, Sharshir SW, Abd Elaziz M, Kabeel AE, Guilan W, Haiou Z. Modeling of solar energy systems using artificial neural network: a comprehensive review. Sol Energy. 2019;180:622–39.

    Article  ADS  Google Scholar 

  32. Nasir S, Berrouk AS. Numerical and intelligent neuro-computational modelling with Fourier’s energy and Fick’s mass flux theory of 3D fluid flow through a stretchable surface. Eng Appl Comp Fluid Mech. 2023;17(1):2270675.

    Google Scholar 

  33. Saeed A, Kumam P, Nasir S, Gul T, Kumam W. Non-linear convective flow of the thin film nanofluid over an inclined stretching surface. Sci Rep. 2021;11(1):18410.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Butt ZI, Ahmad I, Ilyas H, Shoaib M, Raja MAZ. Design of inverse multiquadric radial basis neural networks for the dynamical analysis of MHD Casson nanofluid flow along a nonlinear stretchable porous surface with multiple slip conditions. Int J Hydrogen Energy. 2023;48(42):16100–31.

    Article  CAS  Google Scholar 

  35. Khan I, Raja MAZ, Khan MAR, Shoaib M, Islam S, Shah Z. Design of backpropagated intelligent networks for nonlinear second-order Lane-Emden pantograph delay differential systems. Arab J Sci Eng. 2022;47(2):1197–210.

    Article  Google Scholar 

  36. Toghraie D, Sina N, Jolfaei NA, Hajian M, Afrand M. Designing an Artificial Neural Network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles. Phys A. 2019;534:122142.

    Article  CAS  Google Scholar 

  37. Shahsavar A, Khanmohammadi S, Toghraie D, Salihepour H. Experimental investigation and develop ANNs by introducing the suitable architectures and training algorithms supported by sensitivity analysis: measure thermal conductivity and viscosity for liquid paraffin based nanofluid containing Al2O3 nanoparticles. J Mol Liq. 2019;276:850–60.

    Article  CAS  Google Scholar 

  38. Saabas HJ, Baliga BR. Co-located equal-order control-volume finite-element method for multidimensional, incompressible. Fluid flow-part I: formulation. Numer Heat Transf. 1994;26(4):381–407.

    Article  ADS  CAS  Google Scholar 

  39. Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math. 1944;2(2):164–8.

    Article  MathSciNet  Google Scholar 

  40. Zarei MJ, Ansari HR, Keshavarz P, Zerafat MM. Prediction of pool boiling heat transfer coefficient for various nano-refrigerants utilizing artificial neural networks. J Therm Anal Calorim. 2020;139:3757–68.

    Article  CAS  Google Scholar 

  41. Raja MAZ, Shoaib M, Zubair G, Khan MI, Gowda RP, Prasannakumara BC, Guedri K. Intelligent neuro-computing for entropy generated Darcy–Forchheimer mixed convective fluid flow. Math Comput Simul. 2022;201:193–214.

    Article  MathSciNet  Google Scholar 

  42. Naphon P, Wiriyasart S, Arisariyawong T. Artificial neural network analysis the pulsating Nusselt number and friction factor of TiO2/water nanofluids in the spirally coiled tube with magnetic field. Int J Heat Mass Transf. 2018;118:1152–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Khalifa University of Science and Technology through the Grant. RC2-2018-024.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saleem Nasir or Abdallah S. Berrouk.

Ethics declarations

Conflict of interest

The authors state that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasir, S., Berrouk, A.S. Comparative study of computational frameworks for magnetite and carbon nanotube-based nanofluids in enclosure. J Therm Anal Calorim 149, 2403–2423 (2024). https://doi.org/10.1007/s10973-023-12811-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12811-z

Keywords

Navigation