Skip to main content
Log in

LSM analysis of thermal enhancement in KKL model-based unsteady nanofluid problem using CCM and slanted magnetic field effects

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main emphasis of the current work is to study a proficient nanofluid model. Thermal conductivity of nanofluid is estimated via KKL (Koo–Kleinstreuer–Li) model keeping the nanoparticles influence up to 0.6%. Further, inclined magnetic field, viscous forces and Cattaneo–Christov effects are included in the analysis. The obtained KKL-nanofluid model is studied via LSM over the domain. From the model outcomes, it is examined that dynamic viscosity, density and heat capacity of the functional liquid enhanced from 1.0025 to 1.01516, 1.00706 to 1.04237 and 1.00106 to 1.00638, by taking the Al2O3 amount from 0.15 to 0.6%, respectively. Keeping the inclined Lorentz forces strength from 1.0 to 4.0 leads to drops in the fluid gesture in the lower half of the domain. Implication of magnetic field from various angles (\(\gamma ={35}{^\circ }, {45}{^\circ }, {55}{^\circ }, {65}{^\circ })\) highly resists the movement. Moreover, inclusion of \({\alpha }_{1}=\mathrm{0.1,0.2,0.3,0.4}\), \({\alpha }_{2}=\mathrm{0.2,0.4,0.6,0.8}\), \({E}_{\mathrm{c}1}=\mathrm{0.1,0.2,0.3,0.4}\) and nanoparticles amount \(\phi =\mathrm{0.02,0.04,0.06,0.08}\) positively enhanced the working fluid temperature and the fluid molecules gained much temperature when the plate accelerated outward from the lower once. For the particular setup, the radiative flux and Lorentz forces in the existence of CCM controlled the fluid temperature. Thus, the temperature performance of the fluid diminished when the magnetic field acted through increasing angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\({\check{u}}, {\check{v}}\) :

Velocity components along the coordinates (m/s)

\({\check{p}}\) :

Pressure (Pa)

\({\check{T}}\) :

Temperature (K)

\({\check{u}}_\text{nf}\) :

Improved dynamic viscosity (kg/m s)

\({\check{u}}_\text{f}\) :

Base liquid dynamic viscosity (kg/m s)

\({\rho }_{\mathrm{nf}}\) :

Improved density of nanoliquid (kg/m3)

\({\rho }_{\mathrm{f}}\) :

Density of base liquid (kg/m3)

\({\check{\sigma}}_\text{nf}\) :

Improved electrical conductivity (S/m)

\({k}_{\mathrm{nf}}\) :

Enhanced thermal conductivity (W/mK)

\({\left({c}_{\mathrm{p}}\right)}_{\mathrm{nf}}\) :

Enhanced heat capacity (J/K)

\(\eta\) :

Similarity variable

\(F\) :

Dimensionless velocity

\(\beta\) :

Dimensionless temperature

\(M\) :

Hartman number

\({P}_{\mathrm{r}}\) :

Prandtl number

\({E}_{\mathrm{c}1}\) :

Eckert number

\({R}_{\mathrm{d}}\) :

Radiation number

\(\phi\) :

Nanoparticles concentration

\({\alpha }_{1}\) :

Thermal relaxation number

References

  1. Gowda RJP, Kumar RN, Jyothi AM, Prasannakumara BC, Nisar KS. KKL correlation for simulation of nanofluid flow over a stretching sheet considering magnetic dipole and chemical reaction. J Appl Math Mech. 2021. https://doi.org/10.1002/zamm.202000372.

    Article  Google Scholar 

  2. Alsagri S, Moradi R. Application of KKL model of studying of nanofluid heat transfer between two rotary tubes. Case Stud Therm Eng. 2019. https://doi.org/10.1016/j.csite.2019.100478.

    Article  Google Scholar 

  3. Sheikholeslami M, Rashidi M, Saad A, Firouzi F, Rokni B, Domairry G. Steady nanofluid flow between parallel plates considering the thermophoresis and Browanian effects. J King Saud Univ Sci. 2016. https://doi.org/10.1016/j.jksus.2015.06.003.

    Article  Google Scholar 

  4. Adnan, Ashraf W. Thermal efficiency in hybrid (Al2O3-CuO/H2O) and ternary hybrid nanofluids (Al2O3-CuO-Cu/H2O) by considering the novel effects of imposed magnetic field and convective heat condition. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2092233.

    Article  Google Scholar 

  5. Sharma BK, Gandhi R, Abbas T, Bhatti MM. Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery. Appl Math Mech. 2023;44:459–76.

    Article  Google Scholar 

  6. Adnan, Ashraf W. Heat transfer mechanism in ternary nanofluid between parallel plates channel using modified Hamilton–Crossers model and thermal radiation effects. Geoenergy Sci Eng. 2023. https://doi.org/10.1016/j.geoen.2023.211732.

    Article  Google Scholar 

  7. Wang F, Kumar RSV, Sowmya G, El-Zahar ER, Prasannakumara BC, Khan MI, Khan SU, Malik MY, Xia WF. LSM and DTM-Pade approximation for the combined impacts of convective and radiative heat transfer on an inclined porous longitudinal fin. Case Stud Therm Eng. 2022. https://doi.org/10.1016/j.csite.2022.101846.

    Article  Google Scholar 

  8. Alhejaili W, Kumar RSV, El-Zahar ER, Sowmya G, Prasannakumara BC, Khan MI, Yogeesha KM, Qayyum S. Analytical solution for temperature equation of a fin problem with variable temperature-dependent thermal properties: application of LSM and DTM-Pade approximant. Chem Phys Lett. 2022. https://doi.org/10.1016/j.cplett.2022.139409.

    Article  Google Scholar 

  9. Kumar RN, Gowda RJP, Madhukesh JK, Prasannakumara BC, Ramesh GK. Impact of thermophoretic particle deposition on heat and mass transfer across the dynamics of Casson fluid flow over a moving thin needle. Phys Scr. 2021. https://doi.org/10.1088/1402-4896/abf802.

    Article  Google Scholar 

  10. Mabood F, Rauf A, Prasannakumara BC, Izadi M, Shehzad SA. Impacts of Stefan blowing and mass convention on flow of Maxwell nanofluid of variable thermal conductivity about a rotating disk. Chin J Phys. 2021;71:260–72.

    Article  CAS  Google Scholar 

  11. Rekha MB, Sarris IE, Madhukesh JK, Raghunatha KR, Prasannakumara BC. Activation energy impact on flow of AA7072-AA7075/water-based hybrid nanofluid through a cone, wedge and plate. Micromachines. 2022. https://doi.org/10.3390/mi13020302.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mahmoodi M, Kandelousi S. Semi-analytical investigation of kerosene alumina nanofluid between two parallel plate. J Aerosp Eng. 2016. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000590.

    Article  Google Scholar 

  13. Rizk D, Ullah A, Ikramullah ES, Alharbi M, Sohail M, Khan R, Khan A, Mlaiki N. Impact of the KKL correlation model on the activation of thermal energy for the hybrid nanofluid flow through permeable vertically rotating surface. Energies. 2022. https://doi.org/10.3390/en15082872.

    Article  Google Scholar 

  14. Ali B, Mishra NK, Rafique K, Jubair S, Mahmood Z, Eldin SM. Mixed convective flow of hybrid nanofluid over a heated stretching disk with zero-mass flux using the modified Buongiorno model. Alex Eng J. 2023;72:89–96.

    Article  Google Scholar 

  15. Ganji D, Hatami M. Squeezing cu-water nanofluid flow analysis between parallel plates by DTM-Pade Method. J Mol Liq. 2014. https://doi.org/10.1016/j.molliq.2013.12.034.

    Article  Google Scholar 

  16. Adnan. Heat transfer inspection in [(ZnO-MWCNTs)/water-EG(50:50)]hnf with thermal radiation ray and convective condition over a Riga surface. Waves Random Complex Med. 2022. https://doi.org/10.1080/17455030.2022.2119300.

    Article  Google Scholar 

  17. Alharbi KAM, Galal AM. Novel magneto-radiative thermal featuring in SWCNT–MWCNT/C2H6O2–H2O under hydrogen bonding. Int J Mod Phys B. 2023. https://doi.org/10.1142/S0217979224500176.

    Article  Google Scholar 

  18. Abbas N, Shatanawi W, Shatnawi M. Transportation of nanomaterial Maxwell fluid flow with thermal slip under the effect of soret-Dufour and second-order slips: nonlinear stretching. Sci Rep. 2023. https://doi.org/10.1038/s41598-022-25600-9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rana S, Nawaz M. Investigation of enhancement of heat transfer in sutterby nanofluid using Koo–Klienstreuer and Li correlations and Cattaneo–Christov heat flux model. Phys Scr. 2019. https://doi.org/10.1088/1402-4896/ab23af.

    Article  Google Scholar 

  20. Mishra NK, Khalid AMA, Rahman KU, Adnan, Eldin SM, Fwaz MZB. Investigation of improved heat transport featuring in dissipative ternary nanofluid over a stretched wavy cylinder under thermal slip. Case Stud Therm Eng. 2023. https://doi.org/10.1016/j.csite.2023.103130.

    Article  Google Scholar 

  21. Al-Zahrani AA, Adnan, Mahmood I, Khaleeq RU, Mutasem ZBF, Tag-Eldin E. Analytical study of (Ag–graphene)/blood hybrid nanofluid influenced by (platelets-cylindrical)nanoparticles and Joule heating via VIM. ACS Omega. 2023;8:19926–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alizadeh A, Takami S, Iranmanesh R, Pasha P. Evaluation of AGM and FEM method for thermal radiation on nanofluid flow between two tubes in nearness of magnetism field. Heliyon. 2023. https://doi.org/10.1016/j.heliyon.2023.e16788.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sotehi N, Kezzar M, Tabet I, Sari R. Natural convection flow and heat transfer of nanofluid in porous media for diffrent shapes and nanoparticles using analytical and numerical methods. Spec Top Rev Porous Med Int J. 2021. https://doi.org/10.1615/specialTopicsRevporousMedia.2021030463.

    Article  Google Scholar 

  24. Bilal A, Sidra J, Al-Essa LA, Zafar M, Al-Bossly A, Alduais FS. Boundary layer and heat transfer analysis of mixed convective nanofluid flow capturing the aspects of nanoparticles over a needle. Mater Today Commun. 2023. https://doi.org/10.1016/j.mtcomm.2023.106253.

    Article  Google Scholar 

  25. Geridonmez B. Numerical investigation of ferrofluid convection with Kelvin forces and non-Darcy effects. AIMS Math. 2018;3:195–210.

    Article  Google Scholar 

  26. Feng. Thermal nanofluid property model with application to nanofluid flow in a parallel-disk syestem-part I: a new thermal conductivity Model for nanofluid Flow. ASME J Heat Mass Transf. 2012. https://doi.org/10.1115/1.4005632.

    Article  Google Scholar 

  27. Abbas W, Adnan, Sayed ME, Mutasem ZBF. Numerical investigation of non-transient comparative heat transport mechanism in ternary nanofluid under various physical constraints. AIMS Math. 2023;8:15932–49.

    Article  Google Scholar 

  28. Abdulkhaliq KAM, Adnan, Akgul A. Investigation of Williamson nanofluid in a convectively heated peristaltic channel and magnetic field via method of moments. AIP Adv. 2023. https://doi.org/10.1063/5.0141498.

    Article  Google Scholar 

  29. Khan Z, Haq U, Ali F, Andualem M. Free convection flow of second grade dusty fluid between two parallel plates using Fick’s and Fourier’s laws: a fractional model. Sci Rep. 2022. https://doi.org/10.1038/s41598-022-06153-3.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pattanaik C, Mishra R, Jena S. Impact of dissipative heat energy on the conducting Jeffery-Hamel KKL based nanofluid model: a numerical approach. Res Sq. 2022. https://doi.org/10.21203/rs.3.rs-1947801/v1.

    Article  Google Scholar 

  31. Ali B, Jubair S, Fathima D, Akhter A, Rafique K, Mahmood Z. MHD flow of nanofluid over moving slender needle with nanoparticles aggregation and viscous dissipation effects. Sci Prog. 2023. https://doi.org/10.1177/00368504231176151.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Razzaq A, Raza N. Heat and mass transfer analysis of Brinkman type fractional nanofluid over a vertical porous plate with velocity slip and Newtonian heating. J Math. 2019;2019:45–69.

    Google Scholar 

  33. Adnan, Ashraf W. Heat transfer in tetra-nanofluid between converging/diverging channel under the influence of thermal radiations by using Galerkin finite element method. Waves Random Complex Med. 2023. https://doi.org/10.1080/17455030.2023.2171154.

    Article  Google Scholar 

  34. Adnan, Waqas A. Joule heating and heat generation/absorption effects on the heat transfer mechanism in ternary nanofluid containing different shape factors in stretchable converging/diverging Channel. Waves Random Complex Med. 2023. https://doi.org/10.1080/17455030.2023.2198038.

    Article  Google Scholar 

  35. Khadija R, Mahmood Z, Alqahtani H, Sayed ME. Various nanoparticle shapes and quadratic velocity impacts on entropy generation and MHD flow over a stretching sheet with joule heating. Alex Eng J. 2023;71:147–59.

    Article  Google Scholar 

  36. Li Z, Khan I, Shafee A, Tlili I, Asifa T. Energy transfer of Jeffery-Hamel nanofluid flow between non-parallel walls using Maxwell-Garnetts and Brinkman models. Energy Rep. 2018. https://doi.org/10.1016/j.egyr.2018.05.003.

    Article  Google Scholar 

  37. Adnan, Alharbi KAM, Bani-Fwaz MZ, Eldin SM, Yassen MF. Numerical heat performance of TiO2/Glycerin under nanoparticles aggregation and nonlinear radiative heat flux in dilating/squeezing channel. Case Stud Therm Eng. 2023. https://doi.org/10.1016/j.csite.2022.102568.

    Article  Google Scholar 

  38. Nadeem A, Sayed ME. Heat transport mechanism in glycerin-titania nanofluid over a permeable slanted surface by considering nanoparticles aggregation and Cattaneo Christov thermal flux. Sci Prog. 2023. https://doi.org/10.1177/00368504231180032.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jha K, Aina B, Ajiya T. MHD naural convection flow in a vertical parallel plate microchannel. Ain Shams Eng J. 2015;6:289–95.

    Article  Google Scholar 

  40. Bhatti M. Recent trends in nanofluid. Inventions. 2021. https://doi.org/10.3390/inventions6020039.

    Article  Google Scholar 

  41. Muhammad N, Nadeem S, Mustafa T. Squeezed flow of a nanofluid with Cattaneo-Christov heat and mass fluxes. Results Phys. 2017;7:862–9.

    Article  Google Scholar 

  42. Ahmed N, Adnan, Khan U, Mohyud-Din ST, Manzoor R. Influence of viscous dissipation on a copper oxide nanofluid in an oblique channel: Implementation of the KKL model. Eur Phys J Plus. 2017. https://doi.org/10.1140/epjp/i2017-11504-y.

    Article  Google Scholar 

  43. Bhatti MM, Sait SM, Ellahi R, Sheremet MA, Oztop H. Thermal analysis and entropy generation of magnetic Eyring-Powell nanofluid with viscous dissipation in a wavy asymmetric channel. Int J Numer Meth Heat Fluid Flow. 2022;33:1609–36.

    Article  Google Scholar 

  44. Aich W, Adnan, Almujibah H, Abdullaev SS, Bani-Fwaz MZ, Hassan AM. Thermal performance of radiated annular extended surface using advanced nanomaterials influenced by various physical controlling parameters for nucleate boiling case. Case Stud Therm Eng. 2023. https://doi.org/10.1016/j.csite.2023.103524.

    Article  Google Scholar 

  45. Zhang L, Tariq N, Bhatti MM. Study of nonlinear quadratic convection on magnetized viscous fluid flow over a non-Darcian circular elastic surface via spectral approach. J Taibah Univ Sci. 2023. https://doi.org/10.1080/16583655.2023.2183702.

    Article  Google Scholar 

  46. Rashidi MM, Mahariq I, Nazari MA, Accouche O, Bhatti MM. Comprehensive review on exergy analysis of shell and tube heat exchangers. J Therm Anal Calorim. 2022;147:12301–11.

    Article  CAS  Google Scholar 

  47. Nidhish KM, Adnan, Sarfraz G, Fwaz MZB, Eldin SM. Dynamics of Corcione nanoliquid on a convectively radiated surface using Al2O3 nanoparticles. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-12448-y.

    Article  Google Scholar 

  48. Adnan, Waqas A. Analysis of heat transfer performance for ternary nanofluid flow in radiated channel under different physical parameters using GFEM. J Taiwan Inst Chem Eng. 2023. https://doi.org/10.1016/j.jtice.2023.104887.

    Article  Google Scholar 

  49. Riaz M, Khan N, Hashmi MS, Alshomrani AS, Inc M. Darcy Forchheimer flow of chemically reactive magnetized ZnO-SAE50 nanolubricant over Riga plate with thermophoretic particle deposition: a numerical approach. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-12468-8.

    Article  Google Scholar 

  50. Mohanty D, Mahanta G, Shaw S, Sibanda S. Thermal and irreversibility analysis on Cattaneo-Christov heat flux-based unsteady hybrid nanofluid flow over a spinning sphere with interfacial nanolayer mechanism. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-12464-y.

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under Grant Number RGP. 2/7/44.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan.

Ethics declarations

Conflict of interest

There is no competing interest regarding the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adnan, Nadeem, A. & Said, N.M. LSM analysis of thermal enhancement in KKL model-based unsteady nanofluid problem using CCM and slanted magnetic field effects. J Therm Anal Calorim 149, 839–851 (2024). https://doi.org/10.1007/s10973-023-12801-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12801-1

Keywords

Navigation