Skip to main content
Log in

Modeling of a MED-TVC desalination system by considering the effects of nanoparticles: energetic and exergetic analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the energetic and exergetic analysis of a multi-effect desalination system with a thermal vapor compression desalination system has been numerically evaluated. For this purpose, the mass, energy, and exergy balance equations for the thermo-compressor, first effect as well as middle effects, and condenser have been developed. The effects of motive steam pressure and number of effects on yield, gained output ratio (GOR), performance ratio (PR) and irreversibility have been examined. Nanoparticles were used to improve the heat transfer properties at different stages. The highest rate of exergy destruction with 61.67% is concerned with thermo-compressor, owing to the large difference between the motive steam pressure and the entrained steam. The lowest exergy losses rate among the various components was 4.89% for the condenser, due to the fact that much of the final distillate steam entrained the thermo-compressor. As the number of effects increased from 1 to 7, the yield, GOR as well as PR, improved by approximately 590% and the irreversibility reduced by 1.88%. As the motive steam pressure increased from 400 to 1290 kPa, the yield decreased by 25.45% while the GOR and PR improved by 12.62 and 14.8%, respectively. From the second law viewpoint, irreversibility intensified by 16.11% which in turn diminished the second efficiency by 3.17%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

MED-TVC:

Multi-effect desalination system with thermal vapor compression

GOR:

Gained output ration

PR:

Performance ration

\(k\) :

Thermal conductivity (W m−1 K−1)

\(\dot{M}\) :

Brine mass flow rate (kg s−1)

\(\dot{E}\) :

Energy (kJ s−1)

\(\rho\) :

Density (kg s−1)

\(\mu\) :

Viscosity (Pa s)

\(\varphi\) :

Nanoparticles volume fraction

References

  1. Marwan M. The effect of wall material on energy cost reduction in building. Case Stud Therm Eng. 2020;17:100573. https://doi.org/10.1016/j.csite.2019.100573.

    Article  Google Scholar 

  2. Li Z, Du C, Ahmadi D, Kalbasi R, Rostami S. Numerical modeling of a hybrid PCM-based wall for energy usage reduction in the warmest and coldest months. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09861-y.

    Article  Google Scholar 

  3. Nariman A, Kalbasi R, Rostami S. Sensitivity of AHU power consumption to PCM implementation in the wall-considering the solar radiation. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10068-4.

    Article  Google Scholar 

  4. Kalbasi R, Ruhani B, Rostami S. Energetic analysis of an air handling unit combined with enthalpy air-to-air heat exchanger. J Therm Anal Calorim. 2020;139(4):2881–90. https://doi.org/10.1007/s10973-019-09158-9.

    Article  CAS  Google Scholar 

  5. Shahsavar Goldanlou A, Kalbasi R, Afrand M. Energy usage reduction in an air handling unit by incorporating two heat recovery units. J Build Eng. 2020;32:101545. https://doi.org/10.1016/j.jobe.2020.101545.

    Article  Google Scholar 

  6. Kalbasi R, Shahsavar A, Afrand M. Incorporating novel heat recovery units into an AHU for energy demand reduction-exergy analysis. J Therm Anal Calorim. 2020;139(4):2821–30. https://doi.org/10.1007/s10973-019-09060-4.

    Article  CAS  Google Scholar 

  7. Ahangari M, Maerefat M. An innovative PCM system for thermal comfort improvement and energy demand reduction in building under different climate conditions. Sustain Cities and Soc. 2019;44:120–9. https://doi.org/10.1016/j.scs.2018.09.008.

    Article  Google Scholar 

  8. Kalbasi R, Shahsavar A, Afrand M. Reducing AHU energy consumption by a new layout of using heat recovery units. J Therm Anal Calorim. 2020;139(4):2811–20. https://doi.org/10.1007/s10973-019-09070-2.

    Article  CAS  Google Scholar 

  9. Kalbasi R, Izadi F, Talebizadehsardari P. Improving performance of AHU using exhaust air potential by applying exergy analysis. J Therm Anal Calorim. 2020;139(4):2913–23. https://doi.org/10.1007/s10973-019-09198-1.

    Article  CAS  Google Scholar 

  10. Liu W, Kalbasi R, Afrand M. Solutions for enhancement of energy and exergy efficiencies in air handling units. J Clean Prod. 2020;257:120565. https://doi.org/10.1016/j.jclepro.2020.120565.

    Article  Google Scholar 

  11. Parsa SM, Rahbar A, Javadi D, Koleini MH, Afrand M, Amidpour M. Energy-matrices, exergy, economic, environmental, exergoeconomic, enviroeconomic, and heat transfer (6E/HT) analysis of two passive/active solar still water desalination nearly 4000 m: altitude concept. J Clean Prod. 2020;261:121243. https://doi.org/10.1016/j.jclepro.2020.121243.

    Article  Google Scholar 

  12. Kalbasi R, Alemrajabi AA, Afrand M. Thermal modeling and analysis of single and double effect solar stills: an experimental validation. Appl Therm Eng. 2018;129:1455–65. https://doi.org/10.1016/j.applthermaleng.2017.10.012.

    Article  Google Scholar 

  13. Parsa SM, et al. Experimental assessment on passive solar distillation system on Mount Tochal at the height of 3964 m: study at high altitude. Desalination. 2019;466:77–88. https://doi.org/10.1016/j.desal.2019.05.010.

    Article  CAS  Google Scholar 

  14. Shanazari E, Kalbasi R. Improving performance of an inverted absorber multi-effect solar still by applying exergy analysis. Appl Therm Eng. 2018;143:1–10. https://doi.org/10.1016/j.applthermaleng.2018.07.021.

    Article  Google Scholar 

  15. Afrand M, Kalbasi R, Karimipour A, Wongwises S. Experimental investigation on a thermal model for a basin solar still with an external reflector. Energies. 2017;10(1):18.

    Article  Google Scholar 

  16. Kalbasi R, Esfahani MN. Multi-effect passive desalination system, an experimental approach. World Appl Sci J. 2010;10(10):1264–71.

    CAS  Google Scholar 

  17. Ahmed FE, Hashaikeh R, Diabat A, Hilal N. Mathematical and optimization modelling in desalination: state-of-the-art and future direction. Desalination. 2019;469:114092. https://doi.org/10.1016/j.desal.2019.114092.

    Article  CAS  Google Scholar 

  18. Gude VG. Geothermal source potential for water desalination: current status and future perspective. Renew Sustain Energy Rev. 2016;57:1038–65. https://doi.org/10.1016/j.rser.2015.12.186.

    Article  Google Scholar 

  19. Catrini P, Cipollina A, Giacalone F, Micale G, Piacentino A, Tamburini A. Chapter 12: thermodynamic, exergy, and thermoeconomic analysis of multiple effect distillation processes. In: Gude VG, editor. Renewable energy powered desalination handbook. Oxford: Butterworth-Heinemann; 2018. p. 445–89.

    Chapter  Google Scholar 

  20. Zarzo D, Prats D. Desalination and energy consumption: What can we expect in the near future? Desalination. 2018;427:1–9. https://doi.org/10.1016/j.desal.2017.10.046.

    Article  CAS  Google Scholar 

  21. Ahmed FE, Hashaikeh R, Hilal N. Solar powered desalination: technology, energy and future outlook. Desalination. 2019;453:54–76. https://doi.org/10.1016/j.desal.2018.12.002.

    Article  CAS  Google Scholar 

  22. Al-Karaghouli A, Kazmerski LL. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew Sustain Energy Rev. 2013;24:343–56. https://doi.org/10.1016/j.rser.2012.12.064.

    Article  CAS  Google Scholar 

  23. Xue H, Wang L, Jia L, Xie C, Lv Q. Design and investigation of a two-stage vacuum ejector for MED-TVC system. Appl Therm Eng. 2020;167:114713. https://doi.org/10.1016/j.applthermaleng.2019.114713.

    Article  Google Scholar 

  24. Gao S, Zhao H, Wang X, Yu Z, Lai Y. Study on the performance of a steam ejector with auxiliary entrainment inlet and its application in MED-TVC desalination system. Appl Therm Eng. 2019;159:113925. https://doi.org/10.1016/j.applthermaleng.2019.113925.

    Article  Google Scholar 

  25. Tang Y, Liu Z, Li Y, Shi C, Lv C. A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system. Energy. 2019;175:46–57. https://doi.org/10.1016/j.energy.2019.03.072.

    Article  Google Scholar 

  26. Elsayed ML, Mesalhy O, Mohammed RH, Chow LC. Transient and thermo-economic analysis of MED-MVC desalination system. Energy. 2019;167:283–96. https://doi.org/10.1016/j.energy.2018.10.145.

    Article  Google Scholar 

  27. Elsayed ML, Mesalhy O, Mohammed RH, Chow LC. Exergy and thermo-economic analysis for MED-TVC desalination systems. Desalination. 2018;447:29–42. https://doi.org/10.1016/j.desal.2018.06.008.

    Article  CAS  Google Scholar 

  28. Sadri S, Ameri M, Haghighi Khoshkhoo R. Multi-objective optimization of MED-TVC-RO hybrid desalination system based on the irreversibility concept. Desalination. 2017;402:97–108. https://doi.org/10.1016/j.desal.2016.09.029.

    Article  CAS  Google Scholar 

  29. Ahmadi R, Pourfatemi SM, Ghaffari S. Exergoeconomic optimization of hybrid system of GT, SOFC and MED implementing genetic algorithm. Desalination. 2017;411:76–88. https://doi.org/10.1016/j.desal.2017.02.013.

    Article  CAS  Google Scholar 

  30. Almutairi A, Pilidis P, Al-Mutawa N, Al-Weshahi M. Energetic and exergetic analysis of cogeneration power combined cycle and ME-TVC-MED water desalination plant: part-1 operation and performance. Appl Therm Eng. 2016;103:77–91. https://doi.org/10.1016/j.applthermaleng.2016.02.121.

    Article  Google Scholar 

  31. Janghorban Esfahani A, Ataei V, Shetty K, Oh T, Park JH, Yoo C. Modeling and genetic algorithm-based multi-objective optimization of the MED-TVC desalination system. Desalination. 2012;292:87–104. https://doi.org/10.1016/j.desal.2012.02.012.

    Article  CAS  Google Scholar 

  32. Sharaf MA, Nafey AS, García-Rodríguez L. Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes. Energy. 2011;36(5):2753–64. https://doi.org/10.1016/j.energy.2011.02.015.

    Article  CAS  Google Scholar 

  33. Ansari K, Sayyaadi H, Amidpour M. Thermoeconomic optimization of a hybrid pressurized water reactor (PWR) power plant coupled to a multi effect distillation desalination system with thermo-vapor compressor (MED-TVC). Energy. 2010;35(5):1981–96. https://doi.org/10.1016/j.energy.2010.01.013.

    Article  CAS  Google Scholar 

  34. Catrini P, Cipollina A, Micale G, Piacentino A, Tamburini A. Exergy analysis and thermoeconomic cost accounting of a Combined Heat and Power steam cycle integrated with a Multi Effect Distillation-Thermal Vapour Compression desalination plant. Energy Convers Manag. 2017;149:950–65. https://doi.org/10.1016/j.enconman.2017.04.032.

    Article  CAS  Google Scholar 

  35. Salimi M, Amidpour M. Modeling, simulation, parametric study and economic assessment of reciprocating internal combustion engine integrated with multi-effect desalination unit. Energy Convers Manag. 2017;138:299–311. https://doi.org/10.1016/j.enconman.2017.01.080.

    Article  Google Scholar 

  36. Chen Q, Ja MK, Li Y, Chua KJ. Energy, exergy and economic analysis of a hybrid spray-assisted low-temperature desalination/thermal vapor compression system. Energy. 2019;166:871–85. https://doi.org/10.1016/j.energy.2018.10.154.

    Article  Google Scholar 

  37. Jahangiri M, Haghani A, Mostafaeipour A, Khosravi A, Raeisi HA. Assessment of solar-wind power plants in Afghanistan: a review. Renew Sustain Energy Rev. 2019;99:169–90.

    Article  Google Scholar 

  38. Jahangiri M, Alidadi Shamsabadi A, Saghaei H. Comprehensive evaluation of using solar water heater on a household scale in Canada. J Renew Energy Environ. 2018;5(1):35–42.

    Google Scholar 

  39. Zaniani JR, Dehkordi RH, Bibak A, Bayat P, Jahangiri M. Examining the possibility of using solar energy to provide warm water using RETScreen4 software (Case study: nasr primary school of pirbalut). Curr World Environ. 2015;10(835):2015.

    Google Scholar 

  40. Pahlavan S, Jahangiri M, AlidadiShamsabadi A, Khechekhouche A. Feasibility study of solar water heaters in Algeria, a review. J Sol Energy Res. 2018;3(2):135–46.

    Google Scholar 

  41. Jahangiri M, Ghaderi R, Haghani A, Nematollahi O. Finding the best locations for establishment of solar-wind power stations in Middle-East using GIS: a review. Renew Sustain Energy Rev. 2016;66:38–52.

    Article  Google Scholar 

  42. Jahangiri M, Nematollahi O, Heidari Sooreshjani E, Heidari Sooreshjani A. Investigating the current state of solar energy use in countries with strong radiation potential in asia using GIS software, a review. J Sol Energy Res. 2020;5(3):477–97.

    Google Scholar 

  43. Jahangiri M, Shamsabadi AA, Riahi R, Raeiszadeh F, Dehkordi PF. Levelized cost of electricity for wind-solar power systems in Japan, a review. J Power Technol. 2020;100(3):188–210.

    CAS  Google Scholar 

  44. Mostafaeipour A, Qolipour M, Rezaei M, Jahangiri M, Goli A, Sedaghat A. A novel integrated approach for ranking solar energy location planning: a case study. J Eng Des Technol. 2020.

  45. Jahangiri M, Shamsabadi AA, Mostafaeipour A, Rezaei M, Yousefi Y, Pomares LM. Using fuzzy MCDM technique to find the best location in Qatar for exploiting wind and solar energy to generate hydrogen and electricity. Int J Hydrogen Energy. 2020.

  46. Askari IB, Ameri M. Techno economic feasibility analysis of Linear Fresnel solar field as thermal source of the MED/TVC desalination system. Desalination. 2016;394:1–17. https://doi.org/10.1016/j.desal.2016.04.022.

    Article  CAS  Google Scholar 

  47. Bataineh KM. Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy. Desalination. 2016;385:39–52. https://doi.org/10.1016/j.desal.2016.02.011.

    Article  CAS  Google Scholar 

  48. Askari IB, Ameri M, Calise F. Energy, exergy and exergo-economic analysis of different water desalination technologies powered by Linear Fresnel solar field. Desalination. 2018;425:37–67. https://doi.org/10.1016/j.desal.2017.10.008.

    Article  CAS  Google Scholar 

  49. Samson Packiaraj Raphael V, Velraj R, Jalihal P. Transient analysis of steam accumulator integrated with solar based MED-TVC system. Desalination. 2018;435:3–22. https://doi.org/10.1016/j.desal.2017.12.045.

    Article  CAS  Google Scholar 

  50. Aroussy Y, Saifaoui D, Lilane A, Tarfaoui M. Thermo-economic simulation and analysis of a solar thermal cycle combined with two desalination processes by multi-effect distillation (MED). Mater Today Proc. 2020;30:1027–32. https://doi.org/10.1016/j.matpr.2020.04.382.

    Article  CAS  Google Scholar 

  51. Moghimi M, Emadi M, Mirzazade Akbarpoor A, Mollaei M. Energy and exergy investigation of a combined cooling, heating, power generation, and seawater desalination system. Appl Therm Eng. 2018;140:814–27. https://doi.org/10.1016/j.applthermaleng.2018.05.092.

    Article  Google Scholar 

  52. Karimipour A, Bahrami D, Kalbasi R, Marjani A. Diminishing vortex intensity and improving heat transfer by applying magnetic field on an injectable slip microchannel containing FMWNT/water nanofluid. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10261-5.

    Article  Google Scholar 

  53. Rostami S, Kalbasi R, Jahanshahi R, Qi C, Abbasian-Naghneh S, Karimipour A. Effect of silica nano-materials on the viscosity of ethylene glycol: an experimental study by considering sonication duration effect. J Mater Res Technol. 2020;9(5):11905–17. https://doi.org/10.1016/j.jmrt.2020.07.105.

    Article  CAS  Google Scholar 

  54. Wei H, Afrand M, Kalbasi R, Ali HM, Heidarshenas B, Rostami S. The effect of tungsten trioxide nanoparticles on the thermal conductivity of ethylene glycol under different sonication durations: an experimental examination. Powder Technol. 2020;374:462–9. https://doi.org/10.1016/j.powtec.2020.07.056.

    Article  CAS  Google Scholar 

  55. Li Y, Kalbasi R, Nguyen Q, Afrand M. Effects of sonication duration and nanoparticles concentration on thermal conductivity of silica-ethylene glycol nanofluid under different temperatures: an experimental study. Powder Technol. 2020;367:464–73. https://doi.org/10.1016/j.powtec.2020.03.058.

    Article  CAS  Google Scholar 

  56. Tian X-X, Kalbasi R, Qi C, Karimipour A, Huang H-L. Efficacy of hybrid nano-powder presence on the thermal conductivity of the engine oil: an experimental study. Powder Technol. 2020. https://doi.org/10.1016/j.powtec.2020.05.004.

    Article  Google Scholar 

  57. Nguyen Q, Bahrami D, Kalbasi R, Karimipour A. Functionalized multi-walled carbon nano tubes nanoparticles dispersed in water through an magneto hydro dynamic nonsmooth duct equipped with sinusoidal-wavy wall: diminishing vortex intensity via nonlinear Navier–Stokes equations. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6528.

    Article  Google Scholar 

  58. Rostami S, Kalbasi R, Talebkeikhah M, Goldanlou AS. Improving the thermal conductivity of ethylene glycol by addition of hybrid nano-materials containing multi-walled carbon nanotubes and titanium dioxide: applicable for cooling and heating. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09921-3.

    Article  Google Scholar 

  59. Yan S-R, Kalbasi R, Karimipour A, Afrand M. Improving the thermal conductivity of paraffin by incorporating MWCNTs nanoparticles. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09819-0.

    Article  Google Scholar 

  60. Yan S-R, Kalbasi R, Nguyen Q, Karimipour A. Sensitivity of adhesive and cohesive intermolecular forces to the incorporation of MWCNTs into liquid paraffin: experimental study and modeling of surface tension. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2020.113235.

    Article  Google Scholar 

  61. Tian X-X, Kalbasi R, Jahanshahi R, Qi C, Huang H-L, Rostami S. Competition between intermolecular forces of adhesion and cohesion in the presence of graphene nanoparticles: investigation of graphene nanosheets/ethylene glycol surface tension. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2020.113329.

    Article  Google Scholar 

  62. Nguyen Q, Sedeh SN, Toghraie D, Kalbasi R, Karimipour A. Numerical simulation of the ferro-nanofluid flow in a porous ribbed microchannel heat sink: investigation of the first and second laws of thermodynamics with single-phase and two-phase approaches. J Braz Soc Mech Sci Eng. 2020;42(9):492. https://doi.org/10.1007/s40430-020-02534-9.

    Article  CAS  Google Scholar 

  63. Nguyen Q, Bahrami D, Kalbasi R, Bach Q-V. Nanofluid flow through microchannel with a triangular corrugated wall: heat transfer enhancement against entropy generation intensification. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6705.

    Article  Google Scholar 

  64. Giwa A, Yusuf A, Dindi A, Balogun HA. Polygeneration in desalination by photovoltaic thermal systems: a comprehensive review. Renew Sustain Energy Rev. 2020;130:109946. https://doi.org/10.1016/j.rser.2020.109946.

    Article  Google Scholar 

  65. Singh AK, Singh HK. Performance evaluation of solar still with and without nanofluid. Int J Sci Eng Technol. 2015;3:1093–101.

    Google Scholar 

  66. Saleh SM, Soliman AM, Sharaf MA, Kale V, Gadgil B. Influence of solvent in the synthesis of nano-structured ZnO by hydrothermal method and their application in solar-still. J Environ Chem Eng. 2017;5(1):1219–26.

    Article  CAS  Google Scholar 

  67. Omara Z, Kabeel A, Essa F. Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still. Energy Convers Manag. 2015;103:965–72.

    Article  Google Scholar 

  68. Sharshir S, et al. Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Appl Therm Eng. 2017;113:684–93.

    Article  CAS  Google Scholar 

  69. Mahian O, Kianifar A, Heris SZ, Wen D, Sahin AZ, Wongwises S. Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy. 2017;36:134–55.

    Article  CAS  Google Scholar 

  70. Singh RP, Xu H, Kaushik SC, Rakshit D, Romagnoli A. Charging performance evaluation of finned conical thermal storage system encapsulated with nano-enhanced phase change material. Appl Therm Eng. 2019;151:176–90. https://doi.org/10.1016/j.applthermaleng.2019.01.072.

    Article  CAS  Google Scholar 

  71. Lienhard JH, Mistry KH, Sharqawy MH, Thiel GP. Thermodynamics, exergy, and energy efficiency in desalination systems. 2017.

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, under Grant No. (22-135-35-HiCi). The authors, therefore, acknowledge the technical and financial support of KAU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abusorrah, A.M., Mebarek-Oudina, F., Ahmadian, A. et al. Modeling of a MED-TVC desalination system by considering the effects of nanoparticles: energetic and exergetic analysis. J Therm Anal Calorim 144, 2675–2687 (2021). https://doi.org/10.1007/s10973-020-10524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10524-1

Keywords

Navigation