Skip to main content
Log in

Thermal characterization of chicken feather/PLA biocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, thermal properties of composites from chicken feather fiber (CFF) and polylactic acid (PLA) were investigated. CFF/PLA green composites were manufactured by extrusion and injection molding. Short and long fibers (3 and 20 mm) were used at different contents (2, 5 and 10 mass%). The effects of fiber concentration and fiber length on thermal properties of CFF/PLA composites were studied. Thermal properties of CFF/PLA composites were examined through differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and dynamic mechanical analysis (DMA). From the experiments, it was found that addition of CFF was effective to improve the thermal properties of PLA. The DSC results showed that heat flow increased with the increase in CFF content on the glass transition, on the crystallization temperature and on melting temperature. The TG results revealed that addition of CFF to PLA had positive effect on the thermal stability. In addition, the results of DMA experiments showed that the tan δ decreased with the increasing CFF content, indicating less damping and more elastic behavior in the composites. The results obtained from this study provide important information on the temperature-dependent properties of CFF/PLA and lead to new product development based on natural resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. La Mantia FP, Morreale M. Green composites: a brief review. Compos A. 2011;42:579–88.

    Article  Google Scholar 

  2. Zini E, Scandola M. Green composites: an overview. Polym Compos. 2011;32:1905–14.

    Article  CAS  Google Scholar 

  3. Vink ETH, Rabago KR, Glassner DA, Gruber PR. Applications of life cycle assessment to NatureWorks polylactide(PLA) production. Polym Degrad Stab. 2003;80:403–19.

    Article  CAS  Google Scholar 

  4. Oksman K, Skrifvars M, Selin JF. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol. 2003;63:1317–24.

    Article  CAS  Google Scholar 

  5. Bax B, Müssig J. Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol. 2008;68:1601–7.

    Article  CAS  Google Scholar 

  6. Kannan TG, Wu CM, Cheng KB. Effect of different knitted structure on the mechanical properties and damage behaviour of Flax/PLA (Poly Lactic acid) double covered uncommingled yarn. Compos B. 2012;43:2836–42.

    Article  Google Scholar 

  7. Suardana NPG, Ku MS, Lim JK. Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites. Mater Des. 2011;32:1990–9.

    Article  CAS  Google Scholar 

  8. Baghei B, Skrifvars M, Berglin L. Manufacture and characterization of thermoplastic composites made from PLA/hemp co-wrapped hybrid yarn prepregs. Compos A. 2013;50:93–101.

    Article  Google Scholar 

  9. Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T. How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci. 2008;43(2):775–87.

    Article  CAS  Google Scholar 

  10. Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H. Kenaf reinforced biodegradable composite. Compos Sci Technol. 2003;63:1281–6.

    Article  CAS  Google Scholar 

  11. Huda MS, Drzal LT, Mohanty AK, Misra M. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol. 2008;68:424–32.

    Article  CAS  Google Scholar 

  12. Bledzki AK, Jaszkiewicz A, Scherzer D. Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos A. 2009;40:404–12.

    Article  Google Scholar 

  13. Ho MP, Lau KT, Wang H, Bhattacharyya D. Characteristics of a silk fibre reinforced biodegradable plastic. Compos B. 2011;42:117–22.

    Article  Google Scholar 

  14. Cheung HY, Lau KT, Tao XM, Hui D. A potential material for tissue engineering Silkworm silk/PLA biocomposite. Compos B. 2008;39:1026–33.

    Article  Google Scholar 

  15. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials. 2003;24:401–16.

    Article  CAS  Google Scholar 

  16. Reddy N, Yang Y. Structure and properties of chicken feather barbs as natural protein fibers. J Polym Environ. 2007;15:81–7.

    Article  CAS  Google Scholar 

  17. Barone JR, Schmidt WF, Liebner CFR. Compounding and molding of polyethylene composites reinforced with keratin feather fiber. Compos Sci Technol. 2005;65:683–92.

    Article  CAS  Google Scholar 

  18. Barone JR, Schmidt WF. Polyethylene reinforced with keratin fibers obtained from chicken feathers. Compos Sci Technol. 2005;65:173–81.

    Article  CAS  Google Scholar 

  19. Bullions TA, Hoffman D, Gillespie RA, Price-O’Brien J, Loos AC. Contributions of feather fibers and various cellulose fibers to the mechanical properties of polypropylene matrix composites. Compos Sci Technol. 2006;66:102–14.

    Article  CAS  Google Scholar 

  20. Reddy N, Yang Y. Light-mass polypropylene composites reinforced with whole chicken feathers. J Appl Polym Sci. 2010;116:3668–75.

    CAS  Google Scholar 

  21. Huda S, Yang Y. Composites from ground chicken quill and polypropylene. Compos Sci Technol. 2008;68:790–8.

    Article  CAS  Google Scholar 

  22. Flores-Hernandez CG, Colin-Cruz A, Velasco-Santos C, Castano VM, Rivera-Armenta JL, Almendarez-Camarillo A, Garcia-Casillas PE, Martinez-Hernandez AL. All green composites from fully renewable biopolymers: chitosan–starch reinforced with keratin from feathers. Polymers. 2014;6:686–705.

    Article  Google Scholar 

  23. Martinez-Hernandez AL, Velasco-Santos C, De-Icaza M, Castano VM. Dynamical–mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers. Compos B. 2007;38:405–10.

    Article  Google Scholar 

  24. Cheng S, Lau KT, Liu T, Zhao Y, Lam PM, Yin Y. Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos B. 2009;40:650–4.

    Article  Google Scholar 

  25. Finkenstadt VL, Liu L. Evaluation of poly(lactic acid) and sugar beet pulp green composites. J Polym Environ. 2007;15:1–6.

    Article  CAS  Google Scholar 

  26. De Rosa IM, Iannoni A, Kenny JM, Puglia D, Santulli C, Sarasini F, Terenzi A. Poly(lactic acid)/Phormium tenax composites: morphology and thermo-mechanical behavior. Polym Compos. 2011;32:1362–8.

    Article  Google Scholar 

  27. Huda MS, Drzal LT, Mohanty AK, Misra M. Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos Sci Technol. 2006;66:1813–24.

    Article  CAS  Google Scholar 

  28. Kaiser MR, Anuar HB, Samat NB, Abdul Razak SB. Effect of processing routes on the mechanical, thermal and morphological properties of PLA-based hybrid biocomposite. Iran Polym J. 2013;22:123–31.

    Article  CAS  Google Scholar 

  29. Gregorova A, Hrabalova M, Wimmer R, Saake B, Altaner C. Poly(lactide acid) composites reinforced with fibers obtained from different tissue types of Picea sitchensis. J Appl Polym Sci. 2009;114:2616–23.

    Article  CAS  Google Scholar 

  30. Pilla S, Gong S, O’Neill E, Rowell RM, Krzysik AM. Polylactide-pine wood flour composites. Polym Eng Sci. 2008;48:578–87.

    Article  CAS  Google Scholar 

  31. Moshiul AKM, Mina MF, Beg MDH, Mamun AA, Bledzki AK, Shubhra QTH. Thermo-mechanical and morphological properties of short natural fiber reinforced poly(lactic acid) biocomposite: effect of fiber treatment. Fibers Polym. 2014;15(6):1303–9.

    Article  Google Scholar 

  32. Luo H, Xiong G, Ma C, Chang P, Yao F, Zhu Y, Zhang C, Wan Y. Mechanical and thermo-mechanical behaviors of sizing-treated corn fiber/polylactide composites. Polym Test. 2014;39:45–52.

    Article  CAS  Google Scholar 

  33. Baba BO, Özmen U. Preparation and mechanical characterization of chicken feather/PLA composites. Polym Compos. 2015;1–9. doi:10.1002/pc.23644.

  34. Porras A, Maranon A, Ashcroft IA. Thermo-mechanical characterization of Manicaria Saccifera natural fabric reinforced poly-lactic acid composite lamina. Compos A. 2016;81:105–10.

    Article  CAS  Google Scholar 

  35. Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M. Composites of poly(l-lactide) with hemp fibers: morphology and thermal and mechanical properties. J Appl Polym Sci. 2007;105:255–68.

    Article  CAS  Google Scholar 

  36. Goriparthi BK, Suman KNS, Rao NM. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos A. 2012;43:1800–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Celal Bayar University Research Funds (Number: 2013/35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Özmen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özmen, U., Baba, B.O. Thermal characterization of chicken feather/PLA biocomposites. J Therm Anal Calorim 129, 347–355 (2017). https://doi.org/10.1007/s10973-017-6188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6188-5

Keywords

Navigation