Skip to main content
Log in

Preparation of nano-dispersed lithium niobate by mechanochemical route

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Interaction in the system of lithium carbonate–niobium pentoxide during mechanochemical treatment in air and water has been studied. Prepared samples have been investigated with the help of DTA–TG, XRD, FTIR, Raman, and UV–Vis spectroscopy, adsorption–desorption of nitrogen and TEM. Activation of reagents and direct mechanochemical synthesis are observed at 600–850 and 1,000 rpm, respectively. Lithium metaniobate samples prepared via milling possess high dispersity, defective structure, and improved photocatalytic activity, including under visible illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Niederberger M, Pinna N, Polleux J, Antonietti M. General soft-chemistry route to perovskites and related materials: synthesis of BaTiO3, BaZrO3, and LiNbO3 nanoparticles. Angew Chem Int Ed. 2004;43:2270–3.

    Article  CAS  Google Scholar 

  2. Volk T, Wohlecke M. Lithium niobate defects, photorefraction and photoelectric switching. Berlin: Springer; 2008.

    Google Scholar 

  3. Wu W, Wang K, Li Y, Wu X, Liao S, Wang Q. Nanocrystalline LiMn2O4 preparation and kinetics of thermal process of precursor. J Therm Anal Calorim. 2013;112:1391–9.

    Article  CAS  Google Scholar 

  4. Swaan HM, Li Y, Seshan K, et al. The oxidative coupling of methane and the oxidative dehydrogenation of ethane over a niobium promoted lithium doped magnesium oxide catalyst. Catal Today. 1993;16:537–46.

    Article  CAS  Google Scholar 

  5. Inoue Y, Watanabe Y. Use of LiNbO3 for design of device-type catalysts with activity controllable functions. Catal Today. 1993;16:487–94.

    Article  CAS  Google Scholar 

  6. Xiaoyan L, Kenji K, Kazuya T, et al. Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect. Appl Phys Lett. 2007;91:044101–3.

    Article  Google Scholar 

  7. Giocordi JL, Rohrer GS. Spatially selective photochemical reduction of silver on the surface of ferroelectric barium titanate. Chem Mater. 2001;13:241–5.

    Article  Google Scholar 

  8. Zielinska B, Borowiak-Palen E, Kalenzuk RJ. Preparation and characterization of lithium niobate as a novel photocatalyst in hydrogen generation. J Phys Chem Solids. 2008;69:236–42.

    Article  CAS  Google Scholar 

  9. Godinho MJ, Ribeiro C, Gonçalves RF, Longo E, Leite ER. High-density nanoparticle ceramic bodies. J Therm Anal Calorim. 2013;111:1351–5.

    Article  CAS  Google Scholar 

  10. Su TT, Jiang H, Gong H, Zhai Y. Preparation of nanocrystalline lithium niobate powders at low temperature. Cryst Res Technol. 2010;45:977–82.

    Article  CAS  Google Scholar 

  11. Liu M, Xue D, Luo C. Facile synthesis of lithium niobate squares by a combustion route. J Am Ceram Soc. 2006;89:1551–6.

    Article  CAS  Google Scholar 

  12. Liu M, Xue D. An efficient approach for the direct synthesis of lithium niobate powders. Solid State Ion. 2006;177:275–80.

    Article  CAS  Google Scholar 

  13. Bhagavannarayana G, Ananthamurthy RV, Budakoti GC, et al. A study of the effect of annealing on Fe-doped LiNbO3 by HRXRD, XRT and FT-IR. J Appl Cryst. 2005;38:768–71.

    Article  CAS  Google Scholar 

  14. Indris S, Bork D, Heitjans P. Nanocrystalline oxide ceramics prepared by high-energy ball milling. J Mater Synth Process. 2000;8:245–50.

    Article  CAS  Google Scholar 

  15. Stojanovic BD. Mechanochemical synthesis of ceramic powders with perovskite structure. J Mater Process Technol. 2003;143–144:78–81.

    Article  Google Scholar 

  16. Rojac T, Kosec M, Malic B, Holc J. The application of a milling map in the mechanochemical synthesis of ceramic oxides. J Eur Ceram Soc. 2006;26:3711–6.

    Article  CAS  Google Scholar 

  17. Rojac T, Kosec M, Malic B, Holc J. The mechanochemical synthesis of NaNbO3 using different ball-impact energies. J Am Ceram Soc. 2008;91:1559–65.

    Article  CAS  Google Scholar 

  18. Khalameida S, Sydorchuk V, Skubiszewska-Zięba J, et al. Synthesis, thermo-analytical, and spectroscopical studies of dispersed barium titanate. J Therm Anal Calorim. 2010;101:779–84.

    Article  CAS  Google Scholar 

  19. Rojac T, Bencan A, Ursic H. Synthesis of a Li- and Ta-modified (K, Na)NbO3 solid solution by mechanochemical activation. J Am Ceram Soc. 2008;91:3789–91.

    Article  CAS  Google Scholar 

  20. Timoshevskii AN, Ktalkherman MG, Emel’kin VA, Pozdnyakov BA, Zamyatin AP. High-temperature decomposition of lithium carbonate at atmospheric pressure. High Temp. 2008;46:414–21.

    Article  CAS  Google Scholar 

  21. Zeng HC, Tung SK. Synthesis of lithium niobate gels using a metal alkoxide–metal nitrate precursor. Chem Mater. 1996;8:2667–72.

    Article  CAS  Google Scholar 

  22. Santulli AC, Zhou H, Berweger S, et al. Synthesis of single-crystalline one-dimensional LiNbO3 nanowires. CrystEngComm. 2010;12:2675–8.

    Article  CAS  Google Scholar 

  23. Zhao JP, Liu XR, Qiang LS. Characteristics of the precursors and their thermal decomposition during the preparation of LiNbO3 thin films by the Pechini method. Thin Solid Films. 2006;515:1455–60.

    Article  CAS  Google Scholar 

  24. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM. Recommendations for the characterization of porous solids. Technical Report. Pure Appl Chem. 1994;66:1739–58.

    Article  CAS  Google Scholar 

  25. Dolci F, Di CM, Baricco M, Giamello E. Niobium pentoxide as promoter in the mixed MgH2/Nb2O5 system for hydrogen storage: a multitechnique investigation of the H2 uptake. J Mater Sci. 2007;42:7180–5.

    Article  CAS  Google Scholar 

  26. Lemercier T, Quarton M, Fontaine MF, Hague CF. Structural and chemical transformations induced by laser impact on TiO2 and Nb2O5. J Phys Chem Solids. 1997;58:679–84.

    Article  CAS  Google Scholar 

  27. Redfield D, Burke WJ. Optical absorption edge of LiNbO3. J Appl Phys (USA). 1974;45:4566–71.

    Article  CAS  Google Scholar 

  28. Chao L, Dongfeng X. Mild, quasireverse emulsion route to submicrometer lithium niobate hollow spheres. Langmuir. 2006;22:9914–8.

    Article  Google Scholar 

  29. Thierfelder C, Sanna S, Schindlmayr A, Schmidt WG. Do we know the band gap of lithium niobate? Phys Status Solidi C. 2010;7:362–5.

    Article  CAS  Google Scholar 

  30. Zhang W, Sun X, Chen B. Photocatalytic degradation of methyl orange on iron niobate prepared by solid-state reaction. Adv Mater Res. 2010;113–114:2021–4.

    Article  Google Scholar 

  31. Kim TH, Yu YM. Effect of lithium compensation on UV–Vis and IR absorption spectra in LiNbO3 crystals. J Korean Phys Soc. 2002;41:390–4.

    CAS  Google Scholar 

  32. Lo YH, Gopal NO, Ke SC. Origin of photoactivity of oxygen-deficient TiO2 under visible light. Appl Phys Lett. 2009;95:083126–8.

    Article  Google Scholar 

  33. Liu G, Yang YG, Wang X, et al. Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant 001 facets. J Phys Chem C. 2009;113:21784–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Khalameida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalameida, S., Sydorchuk, V., Leboda, R. et al. Preparation of nano-dispersed lithium niobate by mechanochemical route. J Therm Anal Calorim 115, 579–586 (2014). https://doi.org/10.1007/s10973-013-3343-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3343-5

Keywords

Navigation