Skip to main content
Log in

Neutron and photon activation analyses in geochemical characterization of Libyan Desert Glass

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Geochemical characterization of nine samples of Libyan Desert Glass (LDG) based on assay of more than forty elements by instrumental neutron and photon activation analyses has pointed to quartz sand cemented by aluminosilicates and Fe, Ti oxides as LDG parent materials. Contamination by extraterrestrial material has not been evidenced in studied LDG samples, but depletion of volatile elements indicating their evaporation during the impact process was noticed. Authors support the common concept of LDG formation by an impact into Cretaceous Nubian sandstones, derived from Proterozoic crystalline basement and possibly weathered and redeposited from alluvial or shallow water marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jimenez-Martinez N, Ramirez M, Diaz-Hernandez R, Rodriguez-Gomez G (2015) Fluvial transport model from spatial distribution analysis of Libyan Desert Glass mass on the Great Sand Sea (Southwest Egypt): clues to primary glass distribution. Geoscience 5:95–116. doi:10.3390/geosciences5020095

    Article  Google Scholar 

  2. Greshake A, Koeberl C, Fritz J, Reimold WU (2010) Brownish inclusions and dark streaks in Libyan Desert Glass: evidence for high-temperature melting of the target rock. Meteorit Planet Sci 45:973–989. doi:10.1111/j.1945-5100.2010.01079.x

    Article  CAS  Google Scholar 

  3. Fudali RF (1981) The major element chemistry of Libyan Desert Glass and the mineralogy of its precursor. Meteorit Planet Sci 16:247–259. doi:10.1111/j.1945-5100.1981.tb00549.x

    Article  CAS  Google Scholar 

  4. Barrat JA, Jahn BM, Amossé J, Rocchia R, Keller F, Poupeau GR, Diemer E (1997) Geochemistry and origin of Libyan Desert Glasses. Geochim Cosmochim Acta 61:1953–1959. doi:10.1016/S0016-7037(97)00063-X

    Article  CAS  Google Scholar 

  5. Aboud T (2009) Libyan Desert Glass: has the enigma of its origin been resolved? Phys Proc 2:1425–1432. doi:10.1016/j.phpro.2009.11.112

    Article  CAS  Google Scholar 

  6. Reimold WU, Koeberl C (2014) Impact structures in Africa: a review. J Afr Earth Sci 93:57–175. doi:10.1016/j.jafrearsci.2014.01.008

    Article  Google Scholar 

  7. Clayton PA, Spencer LJ (1934) Silica glass from the Libyan desert. Mineral Mag 23:501–508. doi:10.1180/minmag.1934.023.144.04

    Article  CAS  Google Scholar 

  8. de Michele V (1998) The ‘‘Libyan Desert Glass’’ scarab in Tutankhamen’s pectoral. Sahara 10:107–109

    Google Scholar 

  9. The Grand Egyptian Museum. http://gem.gov.eg/index/Gallery%20-G1_3.htm. Accessed 21 Jun 2016

  10. Seebaugh WR, Strauss AM (1984) A cometary impact model for the source of Libyan Desert Glass. J Non-Cryst Solids 67:511–519. doi:10.1016/0022-3093(84)90173-X

    Article  Google Scholar 

  11. Bigazzi G, de Michele V (1996) New fission-track age determination on impact glasses. Meteorit Planet Sci 31:234–236. doi:10.1111/j.1945-5100.1996.tb02017.x

    Article  CAS  Google Scholar 

  12. Pratesi G, Viti C, Cipriani C, Mellini M (2002) Silicate-silicate liquid immiscibility and graphite ribbons in Libyan Desert Glass. Geochim Cosmochim Acta 66:903–911. doi:10.1016/S0016-7037(01)00820-1

    Article  CAS  Google Scholar 

  13. Fröhlich F, Poupeau G, Badou A, le Bourdonnec FX, Sacquin Y, Dubernet S, Bardintzeff JM, Véran M, Smith DC, Diemer E (2013) Libyan Desert Glass: new field and fourier transform infrared data. Meteorit Planet Sci 48:2517–2530. doi:10.1111/maps.12223

    Article  Google Scholar 

  14. Wasson JT (2003) Large aerial burst: an important class of terrestrial accretionary events. Astrobiology 3:163–179. doi:10.1089/153110703321632499

    Article  Google Scholar 

  15. Boslough MBE, Crawford DA (2008) Low-altitude airbursts and the impact threat. Int J Impact Eng 35:1441–1448. doi:10.1016/j.ijimpeng.2008.07.053

    Article  Google Scholar 

  16. Longinelli A, Sighinolfi G, de Michele V, Selmo E (2011) δ18O and chemical composition of Libyan Desert Glass, country rocks, and sands: new considerations on target material. Meteorit Planet Sci 46:218–227. doi:10.1111/j.1945-5100.2010.01147.x

    Article  CAS  Google Scholar 

  17. Kramers JD, Andreoli MAG, Atanasova M, Belyanin GA, Block DL, Franklyn C, Harris C, Lekgoathi M, Montross CS, Ntoane T, Pischedda V, Segonyane P, Viljoen KS, Westraadt JE (2013) Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass strewnfield, SW Egypt: evidence for a shocked comet fragment. Earth Planet Sci Lett 382:21–31. doi:10.1016/j.epsl.2013.09.003

    Article  CAS  Google Scholar 

  18. Abate B, Koeberl C, Kruger FJ, Underwood JR (1999) BP and oasis impact structures, Libya, and their relation to Libyan Desert Glass. In: Dressler BO, Sharpton VL (eds) Large meteorite impacts and planetary evolution. Geol Soc Amer Spec Paper 339:177–192

  19. El-Baz F, Ghoneim E (2007) Largest crater shape in the Great Sahara revealed by multi-spectral images and radar data. Int J Remote Sens 28:451–458. doi:10.1080/01431160600944002

    Article  Google Scholar 

  20. Koeberl C (1997) Libyan Desert Glass: Geochemical composition and origin. In: de Michele V (ed) Proceedings of the Silica ‘96 meeting on Libyan Desert Glass and related desert events. Pyramids, Segrate (Milano), pp 121–131

    Google Scholar 

  21. Koeberl C (2000) Confirmation of a meteoritic component in Libyan Desert Glass from osmium isotope data. Meteorit Planet Sci 35:A89–A90

    Google Scholar 

  22. Giuli G, Paris E, Pratesi G, Koeberl C, Cipriani C (2003) Iron oxidation state in Fe rich layer and silica matrix of Libyan Desert Glass: a high-resolution XANES study. Meteorit Planet Sci 38:1181–1186. doi:10.1111/j.1945-5100.2003.tb00306.x

    Article  CAS  Google Scholar 

  23. Kleinmann B, Horn P, Langenhorst F (2001) Evidence for shock metamorphism in sandstones from the Libyan Desert Glass strewn field. Meteorit Planet Sci 36:1277–1282. doi:10.1111/j.1945-5100.2001.tb01960.x

    Article  CAS  Google Scholar 

  24. Mizera J, Řanda Z (2010) Instrumental neutron and photon activation analyses of selected geochemical reference materials. J Radioanal Nucl Chem 284:157–163. doi:10.1007/s10967-010-0447-2

    Article  CAS  Google Scholar 

  25. Řanda Z, Frána J, Mizera J, Kučera J, Novák JK, Ulrych J, Belov AG, Maslov OD (2007) Instrumental neutron and photon activation analysis in the geochemical study of phonolitic and trachytic rocks. Geostand Geoanal Res 31:275–283. doi:10.1111/j.1751-908X.2007.00839.x

    Article  Google Scholar 

  26. Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 29:333–338. doi:10.1111/j.1751-908X.2005.tb00904.x

    Article  CAS  Google Scholar 

  27. Govindaraju K (1994) 1994 compilation of working values and sample description for 383 geostandards. Geostand Newslet 18:1–158. doi:10.1046/j.1365-2494.1998.53202081.x-i1

    Article  CAS  Google Scholar 

  28. Bohemian Paradise: Geopark of the Czech Republic. For inscription in the UNESCO geoparks networks. http://ceskyraj.ochranaprirody.cz/res/archive/270/033611.pdf?seek=1456230011. Accessed 22 Jun 2016

  29. Švábenická L (2012) Nannofossil record across the Cenomanian-Coniacian interval in the Bohemian Cretaceous Basin and Tethyan foreland basins (Outer Western Carpathians), Czech Republic. Geol Carpath 63:201–217. doi:10.2478/v10096-012-0018-2

    Google Scholar 

  30. Bruthans J, Soukup J, Vaculíková J, Filippi M, Schweigstillová J, Mayo AL, Masin D, Kletetschka G, Rihosek J (2014) Sandstone landforms shaped by negative feedback between stress and erosion. Nat Geosci 7:597–601. doi:10.1038/NGEO2209

    Article  CAS  Google Scholar 

  31. Murali AV, Zolenski ME, Underwood JR, Giegengack RF (1988) Formation of Libyan Desert Glass. Lunar Planet Sci 19:817–818

    Google Scholar 

  32. Storzer D, Koeberl C (1991) Uranium and zirconium enrichments in Libyan Desert Glass: zircon, baddeleyite, and high temperature history of the glass. Lunar Planet Sci 22:1345–1346

    Google Scholar 

  33. Mizera J, Řanda Z, Tomandl I (2012) Geochemical characterization of impact glasses from the Zhamanshin crater by various modes of activation analysis. Remarks on genesis of irghizites. J Radioanal Nucl Chem 293:359–376. doi:10.1007/s10967-012-1673-6

    Article  CAS  Google Scholar 

  34. Žák K, Skála R, Řanda Z, Mizera J, Heissig K, Ackerman L, Ďurišová J, Jonášová Š, Kameník J, Magna T (2016) Chemistry of tertiary sediments in the surroundings of the Ries impact structure and moldavite formation revisited. Geochim Cosmochim Acta 179:287–311. doi:10.1016/j.gca.2016.01.025

    Article  Google Scholar 

  35. Mizera J, Řanda Z, Kameník J (2016) On a possible parent crater for Australasian tektites: geochemical, isotopic, geographical and other constraints. Earth-Sci Rev 154:123–137. doi:10.1016/j.earscirev.2015.12.004

    Article  CAS  Google Scholar 

  36. Kleinmann B (1969) The breakdown of zircon observed in the Libyan Desert Glass as evidence of its impact origin. Earth Planet Sci Lett 5:497–501. doi:10.1016/S0012-821X(68)80085-8

    Article  CAS  Google Scholar 

  37. Weeks RA, Underwood JR, Giegengack R (1984) Libyan Desert Glass: a review. J Non-Cryst Solids 67:593–619. doi:10.1016/0022-3093(84)90177-7

    Article  CAS  Google Scholar 

  38. Schaaf P, Müller-Sohnius D (2002) Strontium and neodymium isotopic study of Libyan Desert Glass: inherited Pan-African age signatures and new evidence for target material. Meteorit Planet Sci 37:565–576. doi:10.1111/j.1945-5100.2002.tb00839.x

    Article  CAS  Google Scholar 

  39. Magna T, Deutsch A, Mezger K, Skála R, Seitz HM, Mizera J, Řanda Z, Adolph L (2011) Lithium in tektites and impact glasses: implications for sources, histories and large impacts. Geochim Cosmochim Acta 75:2137–2158. doi:10.1016/j.gca.2011.01.032

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the grant 13-22351S of the Czech Science Foundation. Authors thank I. Kolaříková and V. Cílek for providing Libyan Desert Glass samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Mizera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizera, J., Řanda, Z. & Krausová, I. Neutron and photon activation analyses in geochemical characterization of Libyan Desert Glass. J Radioanal Nucl Chem 311, 1465–1471 (2017). https://doi.org/10.1007/s10967-016-5094-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5094-9

Keywords

Navigation