Skip to main content
Log in

Magnitude M w in metropolitan France

  • ORIGINAL ARTICLE
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The recent seismicity catalogue of metropolitan France Sismicité Instrumentale de l’Hexagone (SI-Hex) covers the period 1962–2009. It is the outcome of a multipartner project conducted between 2010 and 2013. In this catalogue, moment magnitudes (M w) are mainly determined from short-period velocimetric records, the same records as those used by the Laboratoire de Détection Géophysique (LDG) for issuing local magnitudes (M L) since 1962. Two distinct procedures are used, whether M L-LDG is larger or smaller than 4. For M L-LDG >4, M w is computed by fitting the coda-wave amplitude on the raw records. Station corrections and regional properties of coda-wave attenuation are taken into account in the computations. For M L-LDG ≤4, M w is converted from M L-LDG through linear regression rules. In the smallest magnitude range M L-LDG <3.1, special attention is paid to the non-unity slope of the relation between the local magnitudes and M w. All M w determined during the SI-Hex project is calibrated according to reference M w of recent events. As for some small events, no M L-LDG has been determined; local magnitudes issued by other French networks or LDG duration magnitude (M D) are first converted into M L-LDG before applying the conversion rules. This paper shows how the different sources of information and the different magnitude ranges are combined in order to determine an unbiased set of M w for the whole 38,027 events of the catalogue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. www.planseisme.fr/Zonage-sismique-de-la-France.html

  2. www.french-property.com/news/build_renovation_france/earthquake_zones_2011

References

  • Bakun W (1984) Seismic moments, local magnitudes, and coda-duration magnitudes for earthquakes in Central California. B Seismol Soc Am 74:439–458

    Google Scholar 

  • Bethmann F, Deichmann N, Mai PM (2011) Scaling relations of local magnitude versus moment magnitude for sequences of similar earthquakes in Switzerland. B Seismol Soc Am 101:515–534

  • Braunmiller J, Deichmann N, Giardini D, Wiemer S, SED Magnitude Working Group (2005) Homogeneous moment-magnitude calibration in Switzerland. B Seismol Soc Am 95:58–74

    Article  Google Scholar 

  • Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophy Res 75:4997–5009

    Article  Google Scholar 

  • Brune JN (1971) Correction. J Geophys Res 76:5002. doi:10.1029/JB076i020p05002

    Article  Google Scholar 

  • Campillo M, Plantet J-L, Bouchon M (1985) Frequency-dependent attenuation in the crust beneath Central France from Lg waves: data analysis and numerical modeling. B Seismol Soc Am 75:1395–1411

    Google Scholar 

  • Cara M, Cansi Y, Schlupp A et al (2015) SI-Hex: a new catalogue of instrumental seismicity for metropolitan France. Bull Soc géol France 186:3–19

    Article  Google Scholar 

  • Castellaro S, Mulargia F, Kagan YY (2006) Regression problems for magnitudes. Geophys J Int 165:913–930

    Article  Google Scholar 

  • Chevrot S, Sylvander M, Delouis B (2011) A preliminary catalog of moment tensors for the Pyrenees. Tectonophysics 510:239–251

    Article  Google Scholar 

  • Deichmann N (2006) Local magnitude, a moment revisited. B Seismol Soc Am 96:1267–1277

    Article  Google Scholar 

  • Delouis B, Charlety J, Vallée M (2009) A method for rapid determination of moment magnitude Mw for moderate to large earthquakes from the near-field spectra of strong-motion records (MWSYNTH). B Seismol Soc Am 99:1827–1840

    Article  Google Scholar 

  • Denieul M, Sèbe O, Cara M, Cansi Y (2015) Mw from crustal coda waves recorded on analog seismograms. B Seismol Soc Am 105:831–849. doi:10.1785/0120140226

    Article  Google Scholar 

  • Dorbath L, Cuenot N, Genter A, Frogneux M (2009) Seismic response of the fractured and faulted granite of Soultz-sous-Forêt (France) to 5 km deep massive water injections. Geophys J Int 177:653–675. doi:10.1111/j.1365-246X.2009.04030.x

    Article  Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis. John Wiley & Sons, New York

    Google Scholar 

  • Drouet S, Cotton F, Gueguen P (2010) Vs30, κ, regional attenuation and Mw from accelerograms : application to magnitude 3–5 French earthquakes. Geophys J Int 182:880–898

    Article  Google Scholar 

  • Giardini D, Woessner J, Danciu L et al (2013) Seismic Hazard Harmonization in Europe (SHARE): doi:10.12686/SED-00000001-SHARE

  • Goertz-Allmann BP, Edwards B, Bethmann F, Deichmann N, Clinton J, Fäh D, Giardini D (2011) A new empirical magnitude scaling relation for Switzerland. B Seismol Soc Am 101:3088–3095

    Article  Google Scholar 

  • Godano M, Larroque C, Bertrand E, Courboulex F, Deschamps A, Salichon J, Blaud-Guerry C, Fourteau L, Charléty J, Deshayes P (2013) The October-November 2010 earthquake swarm near Sampeyre (Piedmont Region, Italy): a complex multicluster sequence. Tectonophysics 608:97–111

    Article  Google Scholar 

  • Grünthal G, Wahlström R (2012) The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J Seismol 16:535–570. doi:10.1007/s10950-012-9302-y

    Article  Google Scholar 

  • Grünthal G, Wahlström R, Stromeyer D (2013) The SHARE European Earthquake Catalogue (SHEEC) for the time period 1900–2006 and its comparison to the European Mediterranean Earthquake Catalogue (EMEC). J Seismol 17:1339–1344

    Article  Google Scholar 

  • Hanks T, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350

    Article  Google Scholar 

  • Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981–2987

    Article  Google Scholar 

  • Lacombe C, Campillo M, Paul A, Margerin L (2003) Separation of intrinsic absorption and scattering attenuation from Lg coda decay in Central France using acoustic radiative transfer theory. Geophys J Int 154:417–425

    Article  Google Scholar 

  • Mayed AK, Walter WR (1996) Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes. J Geophys Res 101:11,195–11,209

    Article  Google Scholar 

  • McGuire RK, Robin K (2008) Probabilistic seismic hazard analysis: early history. Earthq Eng Struct D 37:329–338. doi:10.1002/eqe.765

    Article  Google Scholar 

  • Perrot J, Arroucau P, Guilbert J, Déverchère J, Mazabraud Y, Rolet J, Mocquet A, Mousseau M, Matias L (2005) Analysis of the Mw 4.3 Lorient earthquake sequence: a multidisciplinary approach to the geodynamics of the Armorican Massif, westernmost France. Geophys J Int 162:935–950. doi:10.1111/j.1365-246X.2005.02706.x Corrigendum, 163, 1136–1136

  • Rautian T G, Khalturin VI (1978) The use of the coda for determination of the earthquake source spectrum. Bull Seism Soc Am 68:923–948

  • Rovida A, Camassi R, Gasperini P, Stucchi M (2011) CPTI11, the 2011 version of the parametric catalogue of Italian earthquakes. http://emidius.mi.ingv.it/CPTI. Accessed 14 April 2016

  • SI-Hex (2013) Sismicité Instrumental de l’Hexagone 1962–2009, rapport final. http://eost.unistra.fr. Accessed … 2016.

Download references

Acknowledgments

The SI-Hex project has been conducted thanks to the contribution of the French Ministry of Ecology, Sustainable Development and Energy (MEDDE), together with CNRS, six universities and CEA (conventions no. 0007147 and no. 2100474508). The coda method for magnitude was developed by Marylin Denieul (Ph-D grant linked to the SIGMA/EDF research program). A large part of the material presented in this paper is extracted from the SI-Hex MEDDE final reports (2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Cara.

Appendix

Appendix

The standard errors of the slope α and constant β in (9) can be written in different ways. The least square fit of a normal distribution of K data points (x k , y k ) by a straight line y = a(x − <x>) + b is associated with the following standard errors σ a and σ b (Draper and Smith 1981):

$$ {\sigma}_a=\frac{S}{\sqrt{Sxx}}\ \mathrm{and}\ {\sigma}_b=\kern0.6em S\sqrt{\frac{1}{K}+\frac{{\left(x-<x>\right)}^2}{Sxx}}, $$

where

$$ \begin{array}{l}S=\frac{1}{K-2}{\displaystyle \sum_{k=1}^K{\left({y}_k-{\widehat{y}}_k\right)}^2}\kern0.5em \mathrm{with}\kern0.5em {\widehat{y}}_k=\kern0.5em a\kern0.1em \left({x}_k-<x>\right)+b,\\ {}\mathrm{and}\\ {}Sxx={\displaystyle \sum_{k=1}^K{\left({x}_k-<x>\right)}^2}\kern0.5em \mathrm{with}<x>=\frac{1}{K}{\displaystyle \sum_{k=1}^K{x}_k}.\end{array} $$

When x = < x >, σ b becomes

$$ {\sigma}_b=\sqrt{\frac{S}{K}}={\left\{\frac{1}{K\left(K-2\right)}{\displaystyle \sum_{k=1}^K{\left({y}_k-{\widehat{y}}_k\right)}^2}\right\}}^{1/2}. $$

Introducing the correlation coefficient

$$ r=\frac{Sxy}{\sqrt{Sxx\kern0.5em Syy}} $$

and recalling that

$$ a=\frac{Sxy}{Sxx}\ \mathrm{with}\ Sxy={\displaystyle \sum_{k=1}^K\left({x}_k-<x>\right)\left({y}_k-{\widehat{y}}_k\right)} $$

And

$$ S=\frac{1}{K-2}\left(Syy-\frac{Sx{y}^2}{Sxx}\right)\ \mathrm{with}\ Syy={\displaystyle \sum_{k=1}^K{\left({y}_k-\widehat{y}\right)}^2}, $$

simple computation yields

$$ {\sigma}_a=\frac{a}{\sqrt{K-2}}\sqrt{\frac{1}{r^2}-1}. $$

Expressions (11) of standard errors of the slope α and constant parameter β are obtained by setting

$$ \alpha =a,{M}_k={y}_k\ \mathrm{and}\ {M}_{\mathrm{w}k}={\widehat{y}}_k. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cara, M., Denieul, M., Sèbe, O. et al. Magnitude M w in metropolitan France. J Seismol 21, 551–565 (2017). https://doi.org/10.1007/s10950-016-9617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-016-9617-1

Keywords

Navigation