Skip to main content
Log in

Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We investigated the influence of oscillatory interlayer exchange coupling (OXC) on spin transfer torque (STT)-assisted magnetization switching in the pentalayer nanopillar structure. The impact of OXC between the ferromagnetic layers in the pentalayer nanopillar is realised by solving the associated governing equation, namely Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. First, we calculated the critical current density needed to switch the magnetization of the free layer in the absence of OXC by analytically solving the LLGS equation and its value is \(J_c=0.46 \times 10^{11} Am^{-2}\). Then, we studied the influence of thickness of the spacer layer on the OXC field term and how it affects the critical current density and magnetization switching behaviour by numerical simulations of LLGS equation. By controlling OXC, we reduce critical current density and magnetization switching time from peak values to 86% and 82%, respectively, which is accomplished by constructing a multilayer with optimal spacer layer thickness of 1.7 to 1.9 nm. This work paves a potential way for practical implementation of STT-based MRAMs, nano-oscillators, and logic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ogrodnik, P., et al.: ACS Appl. Mater. Interfaces 13, 47019 (2021)

    Article  Google Scholar 

  2. Dieny, B., et al.: Nat. Electron. 3, 446 (2020)

    Article  Google Scholar 

  3. Hong, J., et al.: Appl. Phys. Lett. 114, 243101 (2019)

  4. Bhatti, S., et al.: Mater. Today 20, 530 (2017)

    Article  Google Scholar 

  5. Litvinenko, A., et al.: Nano Lett. 20, 6104 (2020)

    Article  ADS  Google Scholar 

  6. X. Fong et al., IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 35, 1 (2016)

  7. Freitas, P.P., Ferreira, R., Cardoso, S.: Proc. IEEE 104, 1894 (2016)

    Article  Google Scholar 

  8. Kravets, A.F., et al.: Phys. Rev. B 86, 214413 (2012)

  9. Slonczewski, J.C.: J. Magn. Magn. Mater. 159, L1 (1996)

    Article  ADS  Google Scholar 

  10. Myers, E.B., Ralph, D.C., Katine, J.A., Louie, R.N., Buhrman, R.A.: Science 285, 867 (1999)

    Article  Google Scholar 

  11. Brataas, A., Kent, A.D., Ohno, H.: Nat. Mater. 11, 372 (2012)

    Article  ADS  Google Scholar 

  12. Bruno, P., Chappert, C.: Phys. Rev. Lett. 67, 1602 (1991)

    Article  ADS  Google Scholar 

  13. Bobo, J.F., Gabillet, L., Bibes, M.: J. Phys.: Condens. Matter 16, S471 (2004)

    ADS  Google Scholar 

  14. Ruderman, M.A., Kittel, C.: Phys. Rev. 96, 99 (1954)

    Article  ADS  Google Scholar 

  15. Kasuya, T.: Prog. Theor. Phys. 16, 45 (1956)

    Article  ADS  Google Scholar 

  16. Yosida, K.: Phys. Rev. 106, 893 (1957)

    Article  ADS  Google Scholar 

  17. Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M.B., Sowers, H.: Phys. Rev. Lett. 57, 2442 (1986)

    Article  ADS  Google Scholar 

  18. Salamon, M.B., et al.: Phys. Rev. Lett. 56, 259 (1986)

    Article  ADS  Google Scholar 

  19. Han, G.C., Wang, C.C., Qiu, J.J., Luo, P., Ko, V.: Appl. Phys. Lett. 98, 192502 (2011)

  20. Zietek, S., et al.: Appl. Phys. Lett. 107, 122410 (2015)

  21. Aravinthan, D., Sabareesan, P., Daniel, M.: AIP Advances 5, 077166 (2015)

  22. Aravinthan, D., Sabareesan, P., Daniel, M.: J. Magn. Magn. Mater. 421, 409 (2017)

    Article  ADS  Google Scholar 

  23. Ishikuro, Y., Kawaguchi, M., Taniguchi, T., Hayashi, M.: Phys. Rev. B 101, 014404 (2020)

  24. Bekele, Z.A., Lan, X., Meng, K., Liu, X.: J. Appl. Phys. 127, 113902 (2020)

  25. Chongthanaphisut, P., et al.: J. Appl. Phys. 127, 183902 (2020)

  26. Dai, Z., Liu, W., Zhao, X., Liu, L., Zhang, Z.: ACS Appl. Electron. Mater. 3, 611 (2021)

    Article  Google Scholar 

  27. Maruyama, R., et al.: J. Appl. Phys. 130, 083904 (2021)

  28. Dai, Z., et al.: J. Appl. Phys. 130, 243901 (2021)

  29. Berger, L.: J. Appl. Phys. 93, 7693 (2003)

    Article  ADS  Google Scholar 

  30. Fuchs, G.D., et al.: Appl. Phys. Lett. 86, 152509 (2005)

  31. Huai, Y., Pakala, M., Diao, Z., Ding, Y.: Appl. Phys. Lett. 87, 222510 (2005)

  32. Apalkov, D., Pakala, M., Huai, Y.: J. Appl. Phys. 99, 08B907 (2006)

    Article  Google Scholar 

  33. Diao, Z., et al.: Appl. Phys. Lett. 90, 132508 (2007)

  34. Finocchio, G., Azzerboni, B., Fuchs, G.D., Buhrman, R.A., Torres, L.: J. Appl. Phys. 101, 063914 (2007)

  35. Mojumder, N.N., Augustine, C., Nikonov, D.E., Roy, K.: J. Appl. Phys. 108, 104306 (2010)

  36. Makarov, A., Sverdlov, V., Osintsev, D., Selberherr, S.: IEEE Trans. Magn. 48, 1289 (2012)

    Article  ADS  Google Scholar 

  37. Wang, R.-X., He, P.-B., Li, Z.-D., Pan, A.-L., Liu, Q.-H.: J. Appl. Phys. 109, 033905 (2011)

  38. Chun, B.S., Fowley, C., Abid, M., Coey, J.M.D.: J. Phys. D: Appl. Phys. 43, 025002 (2010)

  39. Sun, J.: Nature 425, 359 (2003)

    Article  ADS  Google Scholar 

  40. Meng, H., Wang, J., Wang, J.-P.: Appl. Phys. Lett. 88, 082504 (2006)

  41. Li, Z., Zhang, S.: Phys. Rev. B 68, 024404 (2003)

  42. Chen, B., Lourembam, J., Chung, H.J., Lim, S.T.: J. Appl. Phys. 129, 163901 (2021)

  43. Lau, Y.-C., Betto, D., Rode, K., Coey, J., Stamenov, P.: Nature Nanotech. 11, 758 (2016)

    Article  ADS  Google Scholar 

  44. Ceylan, A., Baker, C.C., Hasanain, S.K., Shah, S.I.: Phys. Rev. B 72, 134411 (2005)

  45. Frkackowiak, Ł, Kuświk, P., Urbaniak, M., Chaves-O’Flynn, G.D., Stobiecki, F.: Sci. Rep. 8, 1 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is funded by the Center for Nonlinear Systems, Chennai Institute of Technology, India, vide funding number CIT/CNS/2021/RP-015. P. S acknowledges DST-FIST Project (SR/FST/PS-1/2020/135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Aravinthan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aravinthan, D., Sabareesan, P., Manikandan, K. et al. Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling. J Supercond Nov Magn 35, 2831–2836 (2022). https://doi.org/10.1007/s10948-022-06313-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06313-6

Keywords

Navigation