Skip to main content
Log in

Intrinsic Spin Relaxation Processes in Metallic Magnetic Multilayers

  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Spin relaxation processes in metallic magnetic nanostructures are reviewed. First a brief review of the phenomenology of magnetic damping is presented using the Landau Lifshitz Gilbert (LLG) equations of motion. It is shown that the Gilbert damping in bulk metallic layers is caused by the spin orbit interaction and itinerant character of 3d and 4s-p electrons. Spin dynamics in magnetic nanostructures acquires an additional nonlocal damping. This means that a part of the magnetic damping is not given by the local Gilbert damping but arises from the proximity to other layers. Spin pumping and spin sink concepts will be introduced and used to describe the interface nonlocal Gilbert damping in magnetic multilayers. The modified LLG equation of motion in magnetic multilayers will be introduced and tested against the ferromagnetic resonance (FMR) data around the accidental crossover of FMR fields. The spin pumping theory will be compared to the early theories introduced in the 1970s for the interpretation of transmission electron spin resonance (TESR) measurements across ferromagnet/normal metal sandwiches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1 J. R. MacDonald, Proc. Phys. Soc. 64, 968 (1951).

    Article  ADS  Google Scholar 

  2. 2 B. Heinrich, Magnetic Ultrathin Film Structures II, B. Heinrich and J. A. C. Bland, eds. (Springer, Berlin, 1994), Chap. 3.1, pp. 195–222.

    Google Scholar 

  3. 3 B. Heinrich and J. F. Cochran, Adv. Phys. 42, 523 (1993).

    Article  ADS  Google Scholar 

  4. 4 B. Heinrich, J. F. Cochran, and M. Kowalewski, Frontiers in Magnetism of Reduced Dimension Systems, NATO-ASI Series, P. Wigen, V. Baryachtiar, and N. Lesnik, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), Chap. V, p. 161.

    Google Scholar 

  5. 5 D. Goerlitz and J. Koetzler, Eur. Phys. J. B 5, 37 (1998).

    Article  ADS  Google Scholar 

  6. 6 V. Kambersky, Czech. J. Phys. B 26, 1388 (1976).

    Article  Google Scholar 

  7. 7 B. Heinrich, Magnetic Ultrathin Film Structures III, J. A. C. Bland and B. Heinrich, eds. (Springer Verlag, Berlin, 2004).

    Google Scholar 

  8. 8 B. Heinrich, D. Fraitova, and V. Kambersky, Phys. Stat. Sol. 23, 501 (1967).

    Google Scholar 

  9. 9 V. Kambersky, Czech. J. Phys. 34, 1111 (1984).

    Article  ADS  Google Scholar 

  10. 10 J. Kunes and V. Kambersky, Phys. Rev. B 65, 212411 (2002).

    Article  ADS  Google Scholar 

  11. 11 J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Rahlphx, Phys. Rev. Lett. 84, 3149 (2000).

    Article  ADS  Google Scholar 

  12. 12 M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, and P. Wyder, Phys. Rev. Lett. 80, 4281 (1998).

    Article  ADS  Google Scholar 

  13. 13 J. C. Slonczewski, J. Magn. Magn. Mater. 159, 1 (1996).

    Article  ADS  Google Scholar 

  14. 14 S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Empley, R. J. Schoelkopf, R. A. Burman, and D. C. Ralph, Nature 425, 380 (2003).

    Article  ADS  Google Scholar 

  15. 15 Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).

    Article  ADS  Google Scholar 

  16. 16 P. W. Brouwer, Phys. Rev. B 58, R10135 (1998).

    Article  ADS  Google Scholar 

  17. 17 R. Urban, G. Woltersdorf, and B. Heinrich, Phys. Rev. Lett. 87, 217204 (2001).

    Article  ADS  Google Scholar 

  18. 18 B. Heinrich, Y. Tserkovnyak, G. Woltersdorf, A. Brataas, R. Urban, and G. Bauer, Phys. Rev. Lett. 90, 187601 (2003).

    Article  ADS  Google Scholar 

  19. 19 A. Enders, T. Monchesky, K. Myrtle, R. Urban, B. Heinrich, J. Kirschner, X.-G. Zhang, and W. H. Butler, J. Appl. Phys. 89, 7110 (2001).

    Article  ADS  Google Scholar 

  20. 20 M. D. Stiles and A. Zangwill, Phys. Rev. B 66, 014407 (2002).

    Article  ADS  Google Scholar 

  21. 21 B. Heinrich, Z. Celinski, J. F. Cochran, W. B. Muir, J. Rudd, Q. M. Zhong, A. S. Arrott, K. Myrtle, and J. Kirschner, Phys. Rev. Lett. 64, 673 (1990).

    Article  ADS  Google Scholar 

  22. 22 K. Lenz, T. Tolinski, J. Linder, E. Kosubek, and K. Baberschke, Phys. Rev. B 69, 144422 (2004).

    Article  ADS  Google Scholar 

  23. 23 B. Heinrich, G. Woltersdorf, R. Urban, and E. Simanek, J. Appl. Phys. 93, 7545 (2003).

    Article  ADS  Google Scholar 

  24. 24 K. Xia, P. J. Kelly, G. E. W. Bauer, A. Brataas, and I. Turek, Phys. Rev. B 65, R220401 (2002).

    Article  ADS  Google Scholar 

  25. 25 G. Woltersdorf and B. Heinrich, Phys. Rev. B 69, 184417 (2004).

    Article  ADS  Google Scholar 

  26. 26 R. H. Silsbee, A. Janossy, and P. Monod, Phys. Rev. B 19, 4382 (1979).

    Article  ADS  Google Scholar 

  27. 27 R. Urban, B. Heinrich, and G. Woltersdorf, J. Appl. Phys. 93, 8280 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Heinrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrich, B., Woltersdorf, G. Intrinsic Spin Relaxation Processes in Metallic Magnetic Multilayers. J Supercond 20, 83–89 (2007). https://doi.org/10.1007/s10948-006-0216-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-006-0216-1

Keywords

Navigation