Skip to main content
Log in

Improving the Performance of AlGaN-Based Deep Ultraviolet Laser Diodes Using a Convex Waveguide Layer

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

There exists an extensive research interest in the performance improvement of AlGaN-based deep-ultraviolet (DUV) laser diodes (LDs). Herein, to reduce the carrier leakage problem of LDs, we propose a convex waveguide (WG) layer for improving the optoelectronic properties. Numerical analyses are carried out to compare the proposed convex WG layer with traditional and stepped WG layers. For LDs with seven different WG layers, parameters used for comparison are PI and VI characteristic curves, carrier concentrations, stimulated recombination rates, slope efficiencies, and electro-optical conversion efficiencies. We show that the application of the convex WG layer considerably enhances the carrier confinement ability of LDs and reduces carrier leakage, improving the performance of the LDs. The overall performance of LDs with only a convex lower WG (LWG) layer or a stepped LWG layer is stronger than that of LDs with only a convex upper WG (UWG) layer or a stepped UWG layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakamura, M. Senoh, S. I. Nagahama, et al., Appl. Phys. Lett., 70, 1417 (1997).

    Article  ADS  Google Scholar 

  2. M. Kneissl, T. Y. Seong, J. Han, and H. Amano, Nat. Photon., 13, 233 (2019).

    Article  ADS  Google Scholar 

  3. X. Li, H. Xie, F. A. Ponce, et al., Appl. Phys. Lett., 107, 241109 (2015).

  4. W. Sun, C. Byeon, M. McKerns, et al., Appl. Phys. Lett., 73, 1167 (1998).

    Article  ADS  Google Scholar 

  5. H. Amano, R. Collazo, C. D. Santi, et al., J. Phys. D: Appl. Phys., 53, 503001 (2020).

  6. H. Zhao, G. Liu, J. Zhang, et al., J. Disp. Technol., 9, 212 (2013).

    Article  ADS  Google Scholar 

  7. E. R. Buß, U. Rossow, H. Bremers, and A. Hangleiter, Appl. Phys. Lett., 104, 162104 (2014).

  8. H. Hirayama, N. Noguchi, T. Yatabe, and N. Kamata, Appl. Phys. Express, 1, 051101 (2008).

  9. J. Piprek and L. Simon, Opt. Quantum Electron., 42, 89 (2010).

    Article  Google Scholar 

  10. T. Lu, S. Li, K. Zhang, et al., Chin. Phys. B, 20, 098503 (2011).

  11. T. Yasuda, K. Yagi, T. Suzuki, et al., Jpn. J. Appl. Phys., 52, 08JJ05 (2013).

  12. E. P. Pokatilov, D. L. Nika, and A. A. Balandin, Appl. Phys. Lett., 89, 113508 (2006).

  13. W. Yang, D. Li, N. Liu, et al., Appl. Phys. Lett., 100, 435 (2012).

    Google Scholar 

  14. Y. Wang, M. I. Niass, F. Wang, and Y. Liu, Chin. Phys. B, 29, 017301 (2020).

  15. Z. Xing, Y. Zhou, Y. Liu, et al., Chin. Phys. Lett., 37, 027302 (2020).

  16. Z. Xing, Y. Zhou, X. Chen, et al., Optoelectron. Lett., 16, 0087 (2020).

    Article  ADS  Google Scholar 

  17. Y. Wang, M. I. Niass, F. Wang, and Y. Liu, Chin. Phys. Lett., 36, 057301 (2020).

  18. Y. Xing, D. Zhao, D. Jiang, et al., Chin. Phys. B, 27, 028101 (2018).

  19. H. Li, J. Kang, P. Li, et al., Appl. Phys. Lett., 102, 183507 (2013).

  20. Y. Pang, X. Li, and B. Zhao, J. Semicond., 37, 084007 (2016).

  21. S. L. Chuang, Physics of Optoelectronic Devices, Wiley, New York (1995).

    Google Scholar 

  22. K. Dong, D. Chen, B. Liu, et al., Appl. Phys. Lett., 100, 2390 (2012).

    Google Scholar 

  23. I. Vurgaftman and J. R. Meyer, J. Appl. Phys., 94, 3675 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zhang, A., Jia, L. et al. Improving the Performance of AlGaN-Based Deep Ultraviolet Laser Diodes Using a Convex Waveguide Layer. J Russ Laser Res 43, 612–618 (2022). https://doi.org/10.1007/s10946-022-10087-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10087-6

Keywords

Navigation