Skip to main content

Advertisement

Log in

Graphene Nanoplatelets/TiO2 Hybrid Nanofiller Boosted PVA/CMC Blend Based High Performance Nanocomposites for Flexible Energy Storage Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, polymer nanocomposite (PNC) samples based on a host matrix of polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) blend and two nanofillers (graphene nanoplatelets GNP and titanium oxide nanoparticle TiO2 NPs) have been prepared by the solution casting procedure. The TEM and XRD techniques micrographs indicate the platelet shape of GNP with nanosheet dimension, the anatase phase of the cubic/tetragonal TiO2 NPs with a crystalline size range 7–42 nm and their dispersion in the crystalline regions of the host matrix. FTIR absorption spectra reveal the miscibility between PVA and CMC and their interaction/complexation with GNP/TiO2 NPs. The TGA data depicts that the addition of GNP/TiO2 NPs extremely improves the thermal stability/charring of the PVA/CMC blend. The optical bandgap value is decreased from 4.02 to 1.88 eV for the nanocomposite sample (GNP/6 wt% TiO2 NPs), and the absorption edge gradually moves towards longer wavelengths upon the addition of GNP/TiO2 NPs. The electrical conductivity and dielectric properties of the PVA/CMC-GNP/TiO2 NPs films are significantly enhanced over the frequency range 0.1 Hz to 10 MHz. Further, the dielectric parameters and electric modulus of these PNC films have been investigated, where the GNP/TiO2 NPs successfully enhance the host matrix's capacity for energy storage. The stress–strain behavior of PNC samples is tested, where the tensile modulus and elongation at break are significantly improved. Thus, the fascinating physicochemical properties evidence the favorable applications of these biodegradable PNC films in the fabrication of flexible-type micro-and optoelectronic techniques as nanodielectric substrate, light diffuser, bandgap regulator, photosensor, UV-shielder and food packing uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahmad AA, Al-Bataineh QM, Bani-Salameh AA, Telfah AD (2022) Optical, optoelectronic, structural, and chemical characterizations of (PEO-PVA)/MWCNT nanocomposite films. Surf Interfaces 33:102202. https://doi.org/10.1016/J.SURFIN.2022.102202

    Article  CAS  Google Scholar 

  2. Saadiah MA, Zhang D, Nagao Y, Muzakir SK, Samsudin AS (2019) Reducing crystallinity on thin film based CMC/PVA hybrid polymer for application as a host in polymer electrolytes. J Non Cryst Solids 511:201–211. https://doi.org/10.1016/J.JNONCRYSOL.2018.11.032

    Article  CAS  Google Scholar 

  3. El Sayed AM, Saber S (2022) Structural, optical analysis, and Poole-Frenkel emission in NiO/CMC–PVP: bio-nanocomposites for optoelectronic applications. J Phys Chem Solids 163:110590. https://doi.org/10.1016/J.JPCS.2022.110590

    Article  Google Scholar 

  4. Rajeh A, Morsi MA, Elashmawi IS (2019) Enhancement of spectroscopic, thermal, electrical and morphological properties of polyethylene oxide/carboxymethyl cellulose blends: combined FT-IR/DFT. Vacuum 159:430–440. https://doi.org/10.1016/J.VACUUM.2018.10.066

    Article  CAS  Google Scholar 

  5. El-Sayed S, Sayed AME (2021) Influence of the sol–gel-derived nano-sized TiO2 and Y2O3 in improving the optical and electric properties of P(VAc/MMA), Brazilian. J Phys 51:1584–1596. https://doi.org/10.1007/S13538-021-00979-4/TABLES/2

    Article  Google Scholar 

  6. Abutalib MM, Rajeh A (2020) Preparation and characterization of polyaniline/sodium alginate-doped TiO2 nanoparticles with promising mechanical and electrical properties and antimicrobial activity for food packaging applications. J Mater Sci Mater Electron 31:9430–9442. https://doi.org/10.1007/S10854-020-03483-8/TABLES/2

    Article  CAS  Google Scholar 

  7. El-Sayed S, Mahmoud KH, Fatah AA, Hassen A (2011) DSC, TGA and dielectric properties of carboxymethyl cellulose/polyvinyl alcohol blends. Phys B Condens Matter 406:4068–4076. https://doi.org/10.1016/J.PHYSB.2011.07.050

    Article  CAS  Google Scholar 

  8. Alamri HR, El-Hadi AM, Al-Qahtani SM, Assaedi HS, Alotaibi AS (2020) Role of lubricant with a plasticizer to change the glass transition temperature as a result improving the mechanical properties of poly(lactic acid) PLLA. Mater Res Express. https://doi.org/10.1088/2053-1591/ab715a

    Article  Google Scholar 

  9. Morsi MA, Oraby AH, Elshahawy AG, Abd El-Hady RM (2019) Preparation, structural analysis, morphological investigation and electrical properties of gold nanoparticles filled polyvinyl alcohol/carboxymethyl cellulose blend. J Mater Res Technol 8:5996–6010. https://doi.org/10.1016/j.jmrt.2019.09.074

    Article  CAS  Google Scholar 

  10. Al-Muntaser AA, Pashameah RA, Sharma K, Alzahrani E, Farea MO, Morsi MA (2022) α-MoO3 nanobelts/CMC-PVA nanocomposites: hybrid materials for optoelectronic and dielectric applications. J Polym Res 297(29):1–11. https://doi.org/10.1007/S10965-022-03134-Y

    Article  Google Scholar 

  11. El Sayed AM, El-Gamal S, Morsi WM, Mohammed G (2015) Effect of PVA and copper oxide nanoparticles on the structural, optical, and electrical properties of carboxymethyl cellulose films. J Mater Sci 50:4717–4728. https://doi.org/10.1007/S10853-015-9023-Z/TABLES/4

    Article  Google Scholar 

  12. El Sayed AM, El-Gamal S (2015) Synthesis and investigation of the electrical and dielectric properties of Co3O4/(CMC+PVA) nanocomposite films. J Polym Res 22:1–12. https://doi.org/10.1007/S10965-015-0732-4/TABLES/4

    Article  Google Scholar 

  13. Awad S, Alomari AH, Abdel-Hady EE, Hamam MFM (2021) Characterization, nanostructure, and transport properties of styrene grafted PVA/SiO2 hybrid nanocomposite membranes: positron lifetime study. Polym Adv Technol 32:1742–1751. https://doi.org/10.1002/PAT.5210

    Article  CAS  Google Scholar 

  14. Sharmin E, Kafyah MT, Alzaydi AA, Fatani AA, Hazazzi FA, Babgi SK et al (2020) Synthesis and characterization of polyvinyl alcohol/corn starch/linseed polyol-based hydrogel loaded with biosynthesized silver nanoparticles. Int J Biol Macromol 163:2236–2247

    Article  CAS  PubMed  Google Scholar 

  15. Al-Muntaser AA, Adel-Pashameah R, Sharma K, Alzahrani E, Hameed ST, Morsi MA (2022) Boosting of structural, optical, and dielectric properties of PVA/CMC polymer blend using SrTiO3 perovskite nanoparticles for advanced optoelectronic applications. Opt Mater (Amst) 132:112799. https://doi.org/10.1016/J.OPTMAT.2022.112799

    Article  CAS  Google Scholar 

  16. Morsi MA, Abdelaziz M, Oraby AH, Mokhles I (2019) Structural, optical, thermal, and dielectric properties of polyethylene oxide/carboxymethyl cellulose blend filled with barium titanate. J Phys Chem Solids 125:103–114. https://doi.org/10.1016/J.JPCS.2018.10.009

    Article  CAS  Google Scholar 

  17. Morsi MA, Rajeh A, Menazea AA (2019) Nanosecond laser-irradiation assisted the improvement of structural, optical and thermal properties of polyvinyl pyrrolidone/carboxymethyl cellulose blend filled with gold nanoparticles. J Mater Sci Mater Electron 30:2693–2705. https://doi.org/10.1007/s10854-018-0545-4

    Article  CAS  Google Scholar 

  18. Awad S, El-Gamal S, El Sayed AM, Abdel-Hady EE (2020) Characterization, optical, and nanoscale free volume properties of Na-CMC/PAM/CNT nanocomposites. Polym Adv Technol 31:114–125. https://doi.org/10.1002/PAT.4753

    Article  CAS  Google Scholar 

  19. Sengwa RJ, Dhatarwal P (2022) Crystalline phases thermal behaviour and radio frequencies dielectric properties of PVDF/PEO/metal oxides hybrid polymer nanocomposite films. J Polym Res 295(29):1–10. https://doi.org/10.1007/S10965-022-03035-0

    Article  Google Scholar 

  20. Dhatarwal P, Sengwa RJ (2021) Poly(vinyl pyrrolidone) matrix and SiO2, Al2O3, SnO2, ZnO, and TiO2 nanofillers comprise biodegradable nanocomposites of controllable optical properties for optoelectronic applications. Optik 241:167215. https://doi.org/10.1016/J.IJLEO.2021.167215

    Article  CAS  Google Scholar 

  21. Salesa B, Tuñón-Molina A, Cano-Vicent A, Assis M, Andrés J, Serrano-Aroca Á (2022) Graphene nanoplatelets: in vivo and in vitro toxicity, cell proliferative activity, and cell gene expression. Appl Sci 12:720. https://doi.org/10.3390/APP12020720

    Article  CAS  Google Scholar 

  22. Zidan HM, Abdelrazek EM, Abdelghany AM, Tarabiah AE (2019) Characterization and some physical studies of PVA/PVP filled with MWCNTs. J Mater Res Technol 8:904–913. https://doi.org/10.1016/J.JMRT.2018.04.023

    Article  CAS  Google Scholar 

  23. Yassin AY, Mohamed AR, Abdelrazek EM, Morsi MA, Abdelghany AM (2018) Structural investigation and enhancement of optical, electrical and thermal properties of poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate)/graphene oxide nanocomposites. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2018.08.005

    Article  Google Scholar 

  24. Morsi MA, Rajeh A, Al-Muntaser AA (2019) Reinforcement of the optical, thermal and electrical properties of PEO based on MWCNTs/Au hybrid fillers: nanodielectric materials for organoelectronic devices. Compos Part B Eng 173:106957. https://doi.org/10.1016/J.COMPOSITESB.2019.106957

    Article  CAS  Google Scholar 

  25. Shen MY, Chang TY, Hsieh TH, Li YL, Chiang CL, Yang H, Yip MC (2013) Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites. J Nanomater. https://doi.org/10.1155/2013/565401

    Article  Google Scholar 

  26. Prolongo SG, Moriche R, Jiménez-Suárez A, Sánchez M, Ureña A (2014) Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins. Eur Polym J 61:206–214. https://doi.org/10.1016/J.EURPOLYMJ.2014.09.022

    Article  CAS  Google Scholar 

  27. Alam SN, Kumar L, Sharma N, Ray BC (2015) Effect of sonication on the synthesis of exfoliated graphite nanoplatelets by thermal exfoliation process. Graphene 2:75–87. https://doi.org/10.1166/GRAPH.2014.1047

    Article  Google Scholar 

  28. Kim SH, Woo JS, Park SY (2020) Poly(phenylene sulfide) graphite composites with graphite nanoplatelets as a secondary filler for bipolar plates in fuel cell applications. Macromol Res 2811(28):1010–1016. https://doi.org/10.1007/S13233-020-8140-Y

    Article  Google Scholar 

  29. Seretis GV, Polyzou AK, Manolakos DE, Provatidis CG (2018) Tensile performance of graphene nanoplatelets/glass fabric/epoxy nanocomposite laminae. Procedia Struct Integr 10:249–256. https://doi.org/10.1016/J.PROSTR.2018.09.035

    Article  Google Scholar 

  30. Jiang B, Peng B, Zhu A, Zhang C, Li Y (2018) Eco-friendly synthesis of graphene nanoplatelets via a carbonation route and its reinforcement for polytetrafluoroethylene composites. J Mater Sci 53:626–636. https://doi.org/10.1007/S10853-017-1526-3/FIGURES/8

    Article  CAS  Google Scholar 

  31. Abutalib MM, Rajeh A (2020) Influence of MWCNTs/Li-doped TiO2 nanoparticles on the structural, thermal, electrical and mechanical properties of poly (ethylene oxide)/poly (methylmethacrylate) composite. J Organomet Chem 918:121309. https://doi.org/10.1016/J.JORGANCHEM.2020.121309

    Article  CAS  Google Scholar 

  32. Sengwa RJ, Choudhary S, Dhatarwal P (2019) Nonlinear optical and dielectric properties of TiO2 nanoparticles incorporated PEO/PVP blend matrix based multifunctional polymer nanocomposites. J Mater Sci Mater Electron 30:12275–12294. https://doi.org/10.1007/S10854-019-01587-4/FIGURES/15

    Article  CAS  Google Scholar 

  33. Abd El-Kader FH, Hakeem NA, Elashmawi IS, Ismail AM (2013) Enhancement of structural and thermal properties of PEO/PVA blend embedded with TiO2 nanoparticles. Indian J Phys 8710(87):983–990. https://doi.org/10.1007/S12648-013-0333-1

    Article  Google Scholar 

  34. Alhashmi Alamer F, Beyari RF (2022) Influence of silver, gold, and titanium nanoparticles on the physical properties of PEDOT: PSS-coated cotton fabrics. Nanomaterials 12:1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alamgir M, Mallick A, Nayak GC, Tiwari SK (2019) Development of PMMA/TiO2 nanocomposites as excellent dental materials. J Mech Sci Technol 3310(33):4755–4760. https://doi.org/10.1007/S12206-019-0916-7

    Article  Google Scholar 

  36. Idumah CI, Hassan A (2017) Hibiscus cannabinus fiber/PP based nano-biocomposites reinforced with graphene nanoplatelets. J Nat Fibers 14:691–706. https://doi.org/10.1080/15440478.2016.1277817

    Article  CAS  Google Scholar 

  37. Tiwari SK, Oraon R, De Adhikari A, Nayak GC (2017) A thermomechanical study on selective dispersion and different loading of graphene oxide in polypropylene/polycarbonate blends. J Appl Polym Sci 134:45062. https://doi.org/10.1002/APP.45062

    Article  Google Scholar 

  38. Alamgir M, Nayak GC, Mallick A, Tiwari SK, Mondal S, Gupta M (2018) Processing of PMMA nanocomposites containing biocompatible GO and TiO2 nanoparticles. Mater Manuf Process 33:1291–1298

    Article  CAS  Google Scholar 

  39. Chakraborty S, Ponrasu T, Chandel S, Dixit M, Muthuvijayan V (2018) Reduced graphene oxide-loaded nanocomposite scaffolds for enhancing angiogenesis in tissue engineering applications. R Soc Open Sci. https://doi.org/10.1098/RSOS.172017

    Article  PubMed  PubMed Central  Google Scholar 

  40. Morsi MA, Abdelaziz M, Oraby AH, Mokhles I (2018) Effect of lithium titanate nanoparticles on the structural, optical, thermal and electrical properties of polyethylene oxide/carboxymethyl cellulose blend. J Mater Sci Mater Electron 29:15912–15925. https://doi.org/10.1007/S10854-018-9677-9/FIGURES/14

    Article  CAS  Google Scholar 

  41. Bhatta LKG, Subramanyam S, Chengala MD, Bhatta UM, Venkatesh K (2017) Low-temperature CO2 adsorption on Titania nanotubes (TNTs). Surfaces and Interfaces 8:158–162. https://doi.org/10.1016/J.SURFIN.2017.06.001

    Article  CAS  Google Scholar 

  42. Morsi MA, Abdelrazek EM, Ramadan RM, Elashmawi IS, Rajeh A (2022) Structural, optical, mechanical, and dielectric properties studies of carboxymethyl cellulose/polyacrylamide/lithium titanate nanocomposites films as an application in energy storage devices. Polym Test 114:107705. https://doi.org/10.1016/J.POLYMERTESTING.2022.107705

    Article  CAS  Google Scholar 

  43. El Achaby M, El Miri N, Aboulkas A, Zahouily M, Bilal E, Barakat A, Solhy A (2017) Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int J Biol Macromol 96:340–352. https://doi.org/10.1016/J.IJBIOMAC.2016.12.040

    Article  PubMed  Google Scholar 

  44. Hameed ST, Qahtan TF, Abdelghany AM, Oraby AH (2022) Effect of zinc oxide nanoparticles on physical properties of carboxymethyl cellulose/ poly (ethylene oxide) matrix. Phys B Condens Matter 633:413771. https://doi.org/10.1016/J.PHYSB.2022.413771

    Article  CAS  Google Scholar 

  45. Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. https://doi.org/10.1063/1.3071145

  46. Al-Muntaser AA, El-Nahass MM, Oraby AH, Meikhail MS, Zeyada HM (2018) Structural and optical characterization of thermally evaporated nanocrystalline 5,10,15,20-tetraphenyl-21H,23H-porphine manganese (III) chloride thin films. Optik (Stuttg) 167:204–217. https://doi.org/10.1016/j.ijleo.2018.04.041

    Article  CAS  Google Scholar 

  47. Abarna S, Hirankumar G (2019) Vibrational, electrical, dielectric and optical properties of PVA-LiPF6 solid polymer electrolytes. Mater Sci Pol. https://doi.org/10.2478/msp-2019-0037

    Article  Google Scholar 

  48. Al Muntaser ISEAA (2021) Influence of –Co3O4 nanoparticles on the optical , and electrical properties of CMC/PAM polymer : combined FTIR/DFT study. J Inorg Organomet Polym Mater (2021) 31:2682–2690. https://doi.org/10.1007/s10904-021-01956-9.

  49. Elashmawi IS, Al-Muntaser AA, Ismail AM (2022) Structural, optical, and dielectric modulus properties of PEO/PVA blend filled with metakaolin. Opt Mater 126:112220

    Article  Google Scholar 

  50. Alosabi AQ, Al-Muntaser AA, El-Nahass MM, Oraby AH (2022) Electrical conduction mechanism and dielectric relaxation of bulk disodium phthalocyanine. Phys Scr 97:1–24. https://doi.org/10.1088/1402-4896/ac5ff8

    Article  Google Scholar 

  51. Hameed ST, Qahtan TF, Abdelghany AM, Oraby AH (2022) Structural, optical, and dielectric characteristics of copper oxide nanoparticles loaded CMC/PEO matrix. J Mater Sci 57:7556–7569. https://doi.org/10.1007/s10853-022-07134-7

    Article  CAS  Google Scholar 

  52. Ravindran AR, Feng C, Huang S, Wang Y, Zhao Z, Yang J (2018) Effects of graphene nanoplatelet size and surface area on the AC electrical conductivity and dielectric constant of epoxy nanocomposites. Polymers (Basel) 10:477

    Article  PubMed  Google Scholar 

  53. Othman MA, Amat NF, Ahmad BH, Rajan J (2014) Electrical conductivity characteristic of TiO2 nanowires from hydrothermal method. J Phys Conf Ser 2014:12027

    Article  Google Scholar 

  54. Cyriac V, Ismayil IM, Noor K, Mishra C, Chavan RF, Bhajantri SP (2022) Masti, Ionic conductivity enhancement of PVA: carboxymethyl cellulose poly-blend electrolyte films through the doping of NaI salt. Cellulose 29:3271–3291. https://doi.org/10.1007/S10570-022-04483-Z/TABLES/9

    Article  CAS  Google Scholar 

  55. Abarna S, Hirankumar G (2019) Vibrational, electrical, dielectric and optical properties of PVA-LiPF solid polymer electrolytes. Mater Sci 37:331–337

    CAS  Google Scholar 

  56. Pagot G, Bertasi F, Vezzù K, Nawn G, Pace G, Nale A, Di Noto V (2018) Correlation between properties and conductivity mechanism in poly(vinyl alcohol)-based lithium solid electrolytes. Solid State Ionics 320:177–185. https://doi.org/10.1016/J.SSI.2018.03.001

    Article  CAS  Google Scholar 

  57. Morsi MA, Hezma AEM (2019) Effect of iron doped hydroxyapatite nanoparticles on the structural, morphological, mechanical and magnetic properties of polylactic acid polymer. J Mater Res Technol 8:2098–2106. https://doi.org/10.1016/J.JMRT.2019.01.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

"The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4320141DSR66)".

Funding

Funding was provided by Deanship of Scientific Research at Umm Al-Qura University (Grant No.: 22UQU4320141DSR66)

Author information

Authors and Affiliations

Authors

Contributions

AAA-M: Supervision, conceptualization, methodology, resources, software, data curation, writing—original draft, review & editing formal analysis, validation and visualization. RAP: Project administration, methodology, review & editing, formal analysis, validation and visualization, funding acquisition. EA: Methodology, writing, review & editing, formal analysis, validation and visualization. SAS: Methodology, writing, review & editing, formal analysis, validation and visualization. STH: Original draft, methodology, writing, review & editing, resources, formal analysis. MAM: Supervision, conceptualization, methodology, resources, software, data curation, writing—original draft, review & editing formal analysis, validation and visualization. All authors reviewed the manuscript.

Corresponding author

Correspondence to A. A. Al-Muntaser.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Muntaser, A.A., Pashameah, R.A., Alzahrani, E. et al. Graphene Nanoplatelets/TiO2 Hybrid Nanofiller Boosted PVA/CMC Blend Based High Performance Nanocomposites for Flexible Energy Storage Applications. J Polym Environ 31, 2534–2548 (2023). https://doi.org/10.1007/s10924-022-02748-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02748-z

Keywords

Navigation