Skip to main content

Advertisement

Log in

Carboxymethyl and Nanofibrillated Cellulose as Additives on the Preparation of Chitosan Biocomposites: Their Influence Over Films Characteristics

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The aim of this research was to prepare chitosan composite films with commercial carboxymethylcellulose (CMC) and nanofibrillated cellulose (CNF) from palmito sheaths pulp (agroindustrial discard) and compare their influence over the film’s properties. The morphology of cellulose additives influenced their interaction with the polymer matrix as verified on the FTIR spectra and on the SEM images, where the poor dispersibility of CMC could be visualized as aggregates and clusters on chitosan matrix. The extensive defibrillated particles of CNF were well dispersed mainly by their high number of hydrogen bridges that promoted an increase in crystallinity index even in the low level of addition (0.5%). Molecule interactions directly influenced the film’s mechanical properties, where the addition of 1.5% of CNF resulted in an increment of 1.300% for Young’s modulus and 280% for tensile strength; a reduction of 20% of UV light transmittance and a decrease of almost 50% on water absorption. By the other side, even with an increase on the crystallinity index, the addition of CMC resulted in films with low mechanical and barrier properties as compared to the control film. The addition of nanocellulose overcame chitosan main weakness and leaded to a total renewable, biodegradable nanocomposite with adequate mechanical and physical properties to be applied on package development and with the extra attractive of being obtained from an agroindustrial residue, contributing with sustainability and environmental safety concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crops Prod 23:147–161. https://doi.org/10.1016/j.indcrop.2005.05.004

    Article  CAS  Google Scholar 

  2. BCC Research. Glob. Mark. Biodegrad. Polym. to Obtain 15.2% CAGR by 2022. https://www.bccresearch.com/pressroom/pls/global-market-for-biodegradable-polymers-to-obtain-152-cagr-by-2022

  3. Cazón P, Velazquez G, Ramírez JA, Vázquez M (2016) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009

    Article  CAS  Google Scholar 

  4. Kim KM, Son JH, Kim S-K et al (2006) Properties of chitosan films as a function of pH and solvent type. J Food Sci 71:E119–E124. https://doi.org/10.1111/j.1365-2621.2006.tb15624.x

    Article  CAS  Google Scholar 

  5. Escamilla-García M, Calderón-Domínguez G, Chanona-Pérez JJ et al (2013) Physical and structural characterisation of zein and chitosan edible films using nanotechnology tools. Int J Biol Macromol 61:196–203. https://doi.org/10.1016/j.ijbiomac.2013.06.051

    Article  CAS  PubMed  Google Scholar 

  6. El Miri N, Abdelouahdi K, Barakat A et al (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167. https://doi.org/10.1016/j.carbpol.2015.04.051

    Article  CAS  PubMed  Google Scholar 

  7. Rhim J-WW, Park H-MM, Ha C-SS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008

    Article  CAS  Google Scholar 

  8. Abdul Khalil HPS, Davoudpour Y, Saurabh CK et al (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sustain Energy Rev 64:823–836. https://doi.org/10.1016/j.rser.2016.06.072

    Article  CAS  Google Scholar 

  9. Hubbe MA, Ferrer A, Tyagi P et al (2017) Nanocellulose in thin films, coatings, and plies for packaging applications: a review. BioResources 12:2143–2233. https://doi.org/10.15376/biores.12.1.2143-2233

    Article  CAS  Google Scholar 

  10. Vilarinho F, Sanches Silva A, Vaz MF, Farinha JP (2017) Nanocellulose in green food packaging. Crit Rev Food Sci Nutr 0:1–12. https://doi.org/10.1080/10408398.2016.1270254

    Article  CAS  Google Scholar 

  11. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  12. Lindström T (2017) Aspects on nanofibrillated cellulose (NFC) processing, rheology and NFC-film properties. Curr Opin Colloid Interface Sci 29:68–75. https://doi.org/10.1016/j.cocis.2017.02.005

    Article  CAS  Google Scholar 

  13. Bettaieb F, Khiari R, Dufresne A et al (2015) Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydr Polym 123:99–104. https://doi.org/10.1016/j.carbpol.2015.01.026

    Article  CAS  PubMed  Google Scholar 

  14. Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemie Int Ed 50:5438–5466. https://doi.org/10.1002/anie.201001273

    Article  CAS  Google Scholar 

  15. García A, Gandini A, Labidi J et al (2016) Industrial and crop wastes: a new source for nanocellulose biorefinery. Ind Crops Prod 93:26–38. https://doi.org/10.1016/j.indcrop.2016.06.004

    Article  CAS  Google Scholar 

  16. Trache D, Hussin MH, Hui Chuin CT et al (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application? A review. Int J Biol Macromol 93:789–804. https://doi.org/10.1016/j.ijbiomac.2016.09.056

    Article  CAS  PubMed  Google Scholar 

  17. Franco TS, Potulski DC, Viana LC et al (2019) Nanocellulose obtained from residues of peach palm extraction (Bactris gasipaes). Carbohydr Polym 218:8–19. https://doi.org/10.1016/j.carbpol.2019.04.035

    Article  CAS  PubMed  Google Scholar 

  18. Wise LE, Murphy M, D’Addieco AA (1946) A chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Pap Trade J 122:35–43

    CAS  Google Scholar 

  19. Ru J, Qian X (2015) Hydrogen peroxide bleaching of cotton fibers with cationic liposomes as novel stabilizer. Fibers Polym 16:2409–2415. https://doi.org/10.1007/s12221-015-5118-z

    Article  CAS  Google Scholar 

  20. Perumal AB, Sellamuthu PS, Nambiar RB, Sadiku ER (2018) Development of polyvinyl alcohol/chitosan bio-nanocomposite films reinforced with cellulose nanocrystals isolated from rice straw. Appl Surf Sci 449:591–602. https://doi.org/10.1016/j.apsusc.2018.01.022

    Article  CAS  Google Scholar 

  21. Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  Google Scholar 

  22. Chen G, Zhang B, Zhao J (2015) Dispersion process and effect of oleic acid on properties of cellulose sulfate-oleic acid composite film. Materials (Basel) 8:2346–2360. https://doi.org/10.3390/ma8052346

    Article  CAS  Google Scholar 

  23. Leceta I, Peñalba M, Arana P et al (2015) Ageing of chitosan films: effect of storage time on structure and optical, barrier and mechanical properties. Eur Polym J 66:170–179. https://doi.org/10.1016/j.eurpolymj.2015.02.015

    Article  CAS  Google Scholar 

  24. Malagurski I, Levic S, Nesic A et al (2017) Mineralized agar-based nanocomposite films: potential food packaging materials with antimicrobial properties. Carbohydr Polym 175:55–62. https://doi.org/10.1016/j.carbpol.2017.07.064

    Article  CAS  PubMed  Google Scholar 

  25. Zhang N, Yin S, Hou Z et al (2018) Preparation, physicochemical properties and biocompatibility of biodegradable poly(ether-ester-urethane) and chitosan oligosaccharide composites. J Polym Res 25:212. https://doi.org/10.1007/s10965-018-1614-3

    Article  CAS  Google Scholar 

  26. Zhuo X, Liu C, Pan R et al (2017) Nanocellulose mechanically isolated from Amorpha fruticosa Linn. ACS Sustain Chem Eng 5:4414–4420. https://doi.org/10.1021/acssuschemeng.7b00478

    Article  CAS  Google Scholar 

  27. Benbettaïeb N, Kurek M, Bornaz S, Debeaufort F (2014) Barrier, structural and mechanical properties of bovine gelatin-chitosan blend films related to biopolymer interactions. J Sci Food Agric 94:2409–2419. https://doi.org/10.1002/jsfa.6570

    Article  CAS  PubMed  Google Scholar 

  28. Jridi M, Hajji S, Ayed H, Ben et al (2014) Physical, structural, antioxidant and antimicrobial properties of gelatin-chitosan composite edible films. Int J Biol Macromol 67:373–379. https://doi.org/10.1016/j.ijbiomac.2014.03.054

    Article  CAS  PubMed  Google Scholar 

  29. Mohammadi R, Mohammadifar MA, Rouhi M et al (2018) Physico-mechanical and structural properties of eggshell membrane gelatin-chitosan blend edible films. Int J Biol Macromol 107:406–412. https://doi.org/10.1016/j.ijbiomac.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  30. Habibi N (2014) Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM. Spectrochim Acta A 131:55–58. https://doi.org/10.1016/j.saa.2014.04.039

    Article  CAS  Google Scholar 

  31. Qi H, Ma R, Shi C et al (2019) Novel low-cost carboxymethyl cellulose microspheres with excellent fertilizer absorbency and release behavior for saline-alkali soil. Int J Biol Macromol 131:412–419. https://doi.org/10.1016/j.ijbiomac.2019.03.047

    Article  CAS  PubMed  Google Scholar 

  32. Yáñez-S M, Matsuhiro B, Maldonado S et al (2018) Carboxymethylcellulose from bleached organosolv fibers of Eucalyptus nitens: synthesis and physicochemical characterization. Cellulose 25:2901–2914. https://doi.org/10.1007/s10570-018-1766-7

    Article  CAS  Google Scholar 

  33. Mujtaba M, Morsi RE, Kerch G et al (2019) Current advancements in chitosan-based film production for food technology: a review. Int J Biol Macromol 121:889–904. https://doi.org/10.1016/j.ijbiomac.2018.10.109

    Article  CAS  PubMed  Google Scholar 

  34. Celebi H, Kurt A (2015) Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydr Polym 133:284–293. https://doi.org/10.1016/j.carbpol.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  35. Jahed E, Khaledabad MA, Bari MR, Almasi H (2017) Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oil-loaded chitosan films. React Funct Polym 117:70–80. https://doi.org/10.1016/j.reactfunctpolym.2017.06.008

    Article  CAS  Google Scholar 

  36. Deng Z, Jung J, Zhao Y (2017) Development, characterization, and validation of chitosan adsorbed cellulose nanofiber (CNF) films as water resistant and antibacterial food contact packaging. LWT: Food Sci Technol 83:132–140. https://doi.org/10.1016/j.lwt.2017.05.013

    Article  CAS  Google Scholar 

  37. Khan A, Khan R, Salmieri S et al (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608. https://doi.org/10.1016/j.carbpol.2012.07.037

    Article  CAS  PubMed  Google Scholar 

  38. Li Z, Zhang M, Cheng D, Yang R (2016) Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity. Carbohydr Polym 151:834–840. https://doi.org/10.1016/j.carbpol.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  39. Lertsutthiwong P, Noomun K, Khunthon S, Limpanart S (2012) Influence of chitosan characteristics on the properties of biopolymeric chitosan–montmorillonite. Prog Nat Sci Mater Int 22:502–508. https://doi.org/10.1016/j.pnsc.2012.07.008

    Article  Google Scholar 

  40. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306. https://doi.org/10.1021/ja037055w

    Article  CAS  PubMed  Google Scholar 

  41. Li W, Wu Q, Zhao X et al (2014) Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils. Carbohydr Polym 113:403–410. https://doi.org/10.1016/j.carbpol.2014.07.031

    Article  CAS  PubMed  Google Scholar 

  42. Savadekar NR, Karande VS, Vigneshwaran N et al (2012) Preparation of nano cellulose fibers and its application in kappa-carrageenan based film. Int J Biol Macromol 51:1008–1013. https://doi.org/10.1016/j.ijbiomac.2012.08.014

    Article  CAS  PubMed  Google Scholar 

  43. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99. https://doi.org/10.1016/j.indcrop.2011.12.016

    Article  CAS  Google Scholar 

  44. Leceta I, Guerrero P, Ibarburu I et al (2013) Characterization and antimicrobial analysis of chitosan-based films. J Food Eng 116:889–899. https://doi.org/10.1016/j.jfoodeng.2013.01.022

    Article  CAS  Google Scholar 

  45. Hassan ML, Hassan EA, Oksman KN (2011) Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites. J Mater Sci 46:1732–1740. https://doi.org/10.1007/s10853-010-4992-4

    Article  CAS  Google Scholar 

  46. Ziani K, Oses J, Coma V, Maté JI (2008) Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT: Food Sci Technol 41:2159–2165. https://doi.org/10.1016/j.lwt.2007.11.023

    Article  CAS  Google Scholar 

  47. Jahed E, Khaledabad MA, Almasi H, Hasanzadeh R (2017) Physicochemical properties of Carum copticum essential oil loaded chitosan films containing organic nanoreinforcements. Carbohydr Polym 164:325–338. https://doi.org/10.1016/j.carbpol.2017.02.022

    Article  CAS  PubMed  Google Scholar 

  48. Hafsa J, Smach M, ali B, Khedher MR et al (2016) Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. LWT: Food Sci Technol 68:356–364. https://doi.org/10.1016/j.lwt.2015.12.050

    Article  CAS  Google Scholar 

  49. Fortunati E, Armentano I, Zhou Q et al (2012) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab 97:2027–2036. https://doi.org/10.1016/j.polymdegradstab.2012.03.027

    Article  CAS  Google Scholar 

  50. Yu Z, Alsammarraie FK, Nayigiziki FX et al (2017) Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films. Food Res Int 99:166–172. https://doi.org/10.1016/j.foodres.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  51. Savadekar NR, Mhaske ST (2012) Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr Polym 89:146–151. https://doi.org/10.1016/j.carbpol.2012.02.063

    Article  CAS  PubMed  Google Scholar 

  52. Syafri E, Kasim A, Abral H et al (2018) Synthesis and characterization of cellulose nanofibers (CNF) ramie reinforced cassava starch hybrid composites. Int J Biol Macromol 120:578–586. https://doi.org/10.1016/J.IJBIOMAC.2018.08.134

    Article  CAS  PubMed  Google Scholar 

  53. Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506. https://doi.org/10.1016/j.compscitech.2008.11.016

    Article  CAS  Google Scholar 

  54. Larsson M, Hjärtstam J, Larsson A (2012) Novel nanostructured microfibrillated cellulose-hydroxypropyl methylcellulose films with large one-dimensional swelling and tunable permeability. Carbohydr Polym 88:763–771. https://doi.org/10.1016/j.carbpol.2012.01.056

    Article  CAS  Google Scholar 

  55. Quaresimin M, Salviato M, Zappalorto M (2012) Strategies for the assessment of nanocomposite mechanical properties. Composites B 43:2290–2297. https://doi.org/10.1016/j.compositesb.2011.12.012

    Article  CAS  Google Scholar 

  56. Abdul Rashid ES, Muhd Julkapli N, Yehye WA (2018) Nanocellulose reinforced as green agent in polymer matrix composites applications. Polym Adv Technol 29:1531–1546. https://doi.org/10.1002/pat.4264

    Article  CAS  Google Scholar 

  57. Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8. https://doi.org/10.1016/j.cocis.2017.01.004

    Article  CAS  Google Scholar 

  58. Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Ind Crops Prod 97:664–671. https://doi.org/10.1016/j.indcrop.2016.03.013

    Article  CAS  Google Scholar 

  59. Mandal A, Chakrabarty D (2019) Studies on mechanical, thermal, and barrier properties of carboxymethyl cellulose film highly filled with nanocellulose. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705718772868

    Article  Google Scholar 

  60. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Rep 53:73–197. https://doi.org/10.1016/j.mser.2006.06.001

    Article  CAS  Google Scholar 

  61. Tanpichai S, Sampson WW, Eichhorn SJ (2014) Stress transfer in microfibrillated cellulose reinforced poly(vinyl alcohol) composites. Composites A 65:186–191. https://doi.org/10.1016/j.compositesa.2014.06.014

    Article  CAS  Google Scholar 

  62. Oun A, Rhim J-W (2015) Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydr Polym 127:101–109. https://doi.org/10.1016/j.carbpol.2015.03.073

    Article  CAS  PubMed  Google Scholar 

  63. Pereda M, Amica G, Rácz I, Marcovich NE (2011) Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 103:76–83. https://doi.org/10.1016/j.jfoodeng.2010.10.001

    Article  CAS  Google Scholar 

  64. Dehnad D, Emam-Djomeh Z, Mirzaei H et al (2014) Optimization of physical and mechanical properties for chitosan-nanocellulose biocomposites. Carbohydr Polym 105:222–228. https://doi.org/10.1016/j.carbpol.2014.01.094

    Article  CAS  PubMed  Google Scholar 

  65. Ma X, Qiao C, Zhang J, Xu J (2018) Effect of sorbitol content on microstructure and thermal properties of chitosan films. Int J Biol Macromol 119:1294–1297. https://doi.org/10.1016/j.ijbiomac.2018.08.060

    Article  CAS  PubMed  Google Scholar 

  66. Ng HM, Saidi NM, Omar FS et al (2018) Thermogravimetric analysis of polymers. Encycl Polym Sci Technol. https://doi.org/10.1002/0471440264.pst667

    Article  Google Scholar 

  67. Moreno G, Ramirez K, Esquivel M, Jimenez G (2019) Biocomposite films of polylactic acid reinforced with microcrystalline cellulose from pineapple leaf fibers. J Renew Mater 7:9–20. https://doi.org/10.32604/jrm.2019.00017

    Article  CAS  Google Scholar 

  68. Robles E, Salaberria AM, Herrera R et al (2016) Self-bonded composite films based on cellulose nanofibers and chitin nanocrystals as antifungal materials. Carbohydr Polym 144:41–49. https://doi.org/10.1016/j.carbpol.2016.02.024

    Article  CAS  PubMed  Google Scholar 

  69. Pereda M, Amica G, Marcovich NE (2012) Development and characterization of edible chitosan/olive oil emulsion films. Carbohydr Polym 87:1318–1325. https://doi.org/10.1016/j.carbpol.2011.09.019

    Article  CAS  Google Scholar 

  70. Ashrafi A, Jokar M, Mohammadi Nafchi A (2018) Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging. Int J Biol Macromol 108:444–454. https://doi.org/10.1016/j.ijbiomac.2017.12.028

    Article  CAS  PubMed  Google Scholar 

  71. Siripatrawan U, Vitchayakitti W (2016) Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll 61:695–702. https://doi.org/10.1016/j.foodhyd.2016.06.001

    Article  CAS  Google Scholar 

  72. Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH (2010) Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem 122:161–166. https://doi.org/10.1016/j.foodchem.2010.02.033

    Article  CAS  Google Scholar 

  73. Casariego A, Souza BWS, Cerqueira MA et al (2009) Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocoll 23:1895–1902. https://doi.org/10.1016/j.foodhyd.2009.02.007

    Article  CAS  Google Scholar 

  74. Nouri M, Khodaiyan F, Razavib SH, Mousavi MA (2016) The effect of different chemical and physical processing on the physicochemical and functional characterization of chitosan extracted from shrimp waste species of indian white shrimp. Prog Rubber Plast Recycl Technol 32:39–53

    Article  Google Scholar 

  75. Abdollahi M, Rezaei M, Farzi G (2012) Improvement of active chitosan film properties with rosemary essential oil for food packaging. Int J Food Sci Technol 47:847–853. https://doi.org/10.1111/j.1365-2621.2011.02917.x

    Article  CAS  Google Scholar 

  76. Shankar S, Rhim JW (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26. https://doi.org/10.1016/j.carbpol.2015.08.082

    Article  CAS  PubMed  Google Scholar 

  77. Leceta I, Guerrero P, De La Caba K (2013) Functional properties of chitosan-based films. Carbohydr Polym 93:339–346. https://doi.org/10.1016/j.carbpol.2012.04.031

    Article  CAS  PubMed  Google Scholar 

  78. Adhikary KB, Pang S, Staiger MP (2008) Long-term moisture absorption and thickness swelling behaviour of recycled thermoplastics reinforced with Pinus radiata sawdust. Chem Eng J 142:190–198. https://doi.org/10.1016/j.cej.2007.11.024

    Article  CAS  Google Scholar 

  79. Lukitowati F, Indrani DJ (2018) Water absorption of chitosan, collagen, and chitosan/collagen blend membranes exposed to gamma-ray irradiation. Iran J Pharm Sci 14:57–66

    Google Scholar 

  80. Mathew S, Brahmakumar M, Emilia Abraham T (2007) Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch-chitosan blend films. Biopolymers 87:176–187. https://doi.org/10.1002/bip

    Article  Google Scholar 

  81. Peng Y, Li Y (2014) Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocoll 36:287–293. https://doi.org/10.1016/j.foodhyd.2013.10.013

    Article  CAS  Google Scholar 

  82. Mayachiew P, Devahastin S (2010) Effects of drying methods and conditions on release characteristics of edible chitosan films enriched with Indian gooseberry extract. Food Chem 118:594–601. https://doi.org/10.1016/j.foodchem.2009.05.027

    Article  CAS  Google Scholar 

  83. Remedio LN, Silva dos Santos JW, Vieira Maciel VB et al (2019) Characterization of active chitosan films as a vehicle of potassium sorbate or nisin antimicrobial agents. Food Hydrocoll 87:830–838. https://doi.org/10.1016/j.foodhyd.2018.09.012

    Article  CAS  Google Scholar 

  84. Bajpai SK, Chand N, Ahuja S, Roy MK (2015) Curcumin/cellulose micro crystals/chitosan films: water absorption behavior and in vitro cytotoxicity. Int J Biol Macromol 75:239–247. https://doi.org/10.1016/j.ijbiomac.2015.01.038

    Article  CAS  PubMed  Google Scholar 

  85. Srivastava KR et al (2019) Pretreatment of banana pseudostem fibre for green composite packaging film preparation with polyvinyl alcohol. J Polym Res 26:95

    Article  Google Scholar 

  86. Di Pierro P, Chico B, Villalonga R et al (2006) Chitosan-whey protein edible films produced in the absence or presence of transglutaminase: analysis of their mechanical and barrier properties. Biomacromol 7:744–749. https://doi.org/10.1021/bm050661u

    Article  CAS  Google Scholar 

  87. Jafari H, Pirouzifard MK, Khaledabad MA, Almasi H (2016) Effect of chitin nanofiber on the morphological and physical properties of chitosan/silver nanoparticle bionanocomposite films. Int J Biol Macromol 92:461–466. https://doi.org/10.1016/j.ijbiomac.2016.07.051

    Article  CAS  PubMed  Google Scholar 

  88. Ren D, Yi H, Wang W, Ma X (2005) The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr Res 340:2403–2410. https://doi.org/10.1016/j.carres.2005.07.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for granting the postdoctoral scholarship to the lead author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talita Szlapak Franco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, T.S., Amezcua, R.M.J., Rodrìguez, A.V. et al. Carboxymethyl and Nanofibrillated Cellulose as Additives on the Preparation of Chitosan Biocomposites: Their Influence Over Films Characteristics. J Polym Environ 28, 676–688 (2020). https://doi.org/10.1007/s10924-019-01639-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01639-0

Keywords

Navigation