Skip to main content
Log in

Calculation of STOs electron repulsion integrals by ellipsoidal expansion and large-order approximations

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

For general two-electron two-centre integrals over Slater-type orbitals (STOs), the use of the Neumann expansion for the Coulomb interaction potential yields infinite series in terms of few basic functions. In many important cases the number of terms necessary to achieve convergence by a straightforward summation is large and one is forced to calculate the basic integrals of high order. We present a systematic approach to calculation of the higher-order terms in the Neumann series by large-order expansions of the basic integrals. The final expressions are shown to be transparent and straightforward to implement, and all auxiliary quantities can be calculated analytically. Moreover, numerical stability and computational efficiency are also discussed. Results of the present work can be used to speed up calculations of the STOs integral files, but also to study convergence of the Neumann expansion and develop appropriate convergence accelerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Slater, Phys. Rev. 36, 57 (1930)

    Article  CAS  Google Scholar 

  2. J.C. Slater, Phys. Rev. 42, 33 (1932)

    Article  CAS  Google Scholar 

  3. S.F. Boys, Proc. Roy. Soc. A200, 542 (1950). (London)

    Article  Google Scholar 

  4. T. Kato, Commun. Pure Appl. Math. 10, 151 (1957)

    Article  Google Scholar 

  5. S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bound on Eigenfunctions of N-Body Schrödinger Operators (Princeton University Press, Princeton, 1982)

    Google Scholar 

  6. H. Jones, Int. J. Quantum Chem. 51, 417 (1994)

    Article  CAS  Google Scholar 

  7. M.P. Barnett, Int. J. Quantum Chem. 76, 464 (2000)

    Article  CAS  Google Scholar 

  8. M.P. Barnett, J. Chem. Phys. 113, 9419 (2000)

    Article  CAS  Google Scholar 

  9. L. Berlu, H. Safouhi, P. Hoggan, Int. J. Quantum Chem. 99, 221 (2004)

    Article  CAS  Google Scholar 

  10. H. Safouhi, L. Berlu, J. Comput. Phys. 216, 19 (2006)

    Article  Google Scholar 

  11. J. Fernández Rico, J.J. Fernández, I. Ema, R. López, G. Ramírez, Int. J. Quantum Chem. 78, 83 (2000)

    Article  Google Scholar 

  12. J. Fernández Rico, J.J. Fernández, R. López, G. Ramírez, Int. J. Quantum Chem. 78, 137 (2000)

    Article  Google Scholar 

  13. J. Fernández Rico, J.J. Fernández, I. Ema, R. López, G. Ramírez, Int. J. Quantum Chem. 81, 16 (2001)

    Article  Google Scholar 

  14. J. Fernández Rico, R. López, I. Ema, G. Ramírez, J. Comput. Chem. 19, 1284 (1998)

    Article  Google Scholar 

  15. P.E. Hoggan, Int. J. Quantum Chem. 109, 2926 (2009)

    Article  CAS  Google Scholar 

  16. P.E. Hoggan, Int. J. Quantum Chem. 110, 98 (2010)

    Article  CAS  Google Scholar 

  17. A. Bouferguene, P. E. Hoggan, QCPE, programme no. 667 (1996)

  18. K. Pachucki, Phys. Rev. A 80, 032520 (2009)

    Article  CAS  Google Scholar 

  19. K. Pachucki, Phys. Rev. A 85, 042511 (2012)

    Article  CAS  Google Scholar 

  20. M. Lesiuk, R. Moszynski, Phys. Rev. A 86, 052513 (2012)

    Article  CAS  Google Scholar 

  21. E.N. Maslen, M.G. Trefry, Int. J. Quantum Chem. 37, 51 (1990)

    Article  CAS  Google Scholar 

  22. F.E. Harris, Int. J. Quantum Chem. 88, 701 (2002)

    Article  CAS  Google Scholar 

  23. M. Belén Ruiz, J. Math. Chem. 43, 701 (2008)

    Article  CAS  Google Scholar 

  24. M. Belén Ruiz, J. Math. Chem. 46, 24 (2009)

    Article  CAS  Google Scholar 

  25. M. Belén Ruiz, J. Math. Chem. 46, 1322 (2009)

    Article  CAS  Google Scholar 

  26. P.E. Hoggan, M. Belén Ruiz, T. Ozdogan, Molecular integrals over slater-type orbitals. From pioneers to recent progress, in Quantum Frontiers of Atoms and Molecules in Physics, Chemistry, and Biology, 1st edn., ed. by Mihai V. Putz (Nova Science Publishers, Inc., New York, 2010), pp. 63–90

    Google Scholar 

  27. M. Belén Ruiz, J. Math. Chem. 49, 2457 (2011)

    Article  CAS  Google Scholar 

  28. M. Lesiuk, R. Moszynski, Phys. Rev. E 90, 063318 (2014)

    Article  CAS  Google Scholar 

  29. M. Lesiuk, R. Moszynski, Phys. Rev. E 90, 063319 (2014)

    Article  CAS  Google Scholar 

  30. M. Lesiuk, M. Przybytek, M. Musial, B. Jeziorski, R. Moszynski, Phys. Rev. A 91, 012510 (2015)

    Article  CAS  Google Scholar 

  31. K. Ruedenberg, J. Chem. Phys. 19, 1459 (1951)

    Article  Google Scholar 

  32. K. Ruedenberg, C.C.J. Roothaan, W. Jaunzemis, J. Chem. Phys. 24, 201 (1956)

    Article  CAS  Google Scholar 

  33. A.C. Wahl, P.E. Cade, C.C.J. Roothaan, J. Chem. Phys. 41, 2578 (1964)

    Article  CAS  Google Scholar 

  34. E.L. Mehler, K. Ruedenberg, J. Chem. Phys. 50, 2578 (1964)

    Google Scholar 

  35. M. Kotani, A. Amemiya, E. Ishiguro, T. Kimura, Table of Molecular Integrals (Maruzen, Tokyo, 1955)

    Google Scholar 

  36. F.E. Harris, J. Chem. Phys. 32, 3 (1960)

    Article  CAS  Google Scholar 

  37. J. Yasui, A. Saika, J. Chem. Phys. 76, 468 (1982)

    Article  CAS  Google Scholar 

  38. J. Fernández Rico, R. López, G. Ramírez, J. Chem. Phys. 91, 4213 (1989)

    Article  Google Scholar 

  39. J. Fernández Rico, R. López, G. Ramírez, J. Chem. Phys. 97, 7613 (1992)

    Article  Google Scholar 

  40. J. Fernández Rico, R. López, G. Ramírez, C. Tablero, Phys. Rev. A 49, 3381 (1994)

    Article  Google Scholar 

  41. R. López, G. Ramírez, Int. J. Quantum Chem. 49, 11 (1994)

    Article  Google Scholar 

  42. J. Fernández Rico, R. López, G. Ramírez, J. Chem. Phys. 101, 9807 (1994)

    Article  Google Scholar 

  43. M. Abramowitz, I. Stegun (eds.), Handbook of Mathematical Functions (Dover, New York, 1972)

    Google Scholar 

  44. F.W.J. Olver, Asymptotics and Special Functions (A. K. Peters, Wellesley, 1997)

    Google Scholar 

  45. D.S. Jones, Math. Methods Appl. Sci. 24, 369 (2001)

    Article  Google Scholar 

  46. T.M. Dunster, Stud. Appl. Math. 113, 245 (2004)

    Article  Google Scholar 

  47. A. Sidi, P.E. Hoggan, Int. J. Pure Appl. Math. 71, 481 (2011)

    Google Scholar 

  48. P. Hoggan, A. Sidi, D. Pinchon, Adv. Quantum Chem. 68, 43 (2014)

    Article  CAS  Google Scholar 

  49. W. Gautschi, SIAM Rev. 9, 24 (1967)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Polish Ministry of Science and Higher Education through the project “Diamentowy Grant”, Number DI2011 012041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Lesiuk.

Appendices

Appendix 1: Auxiliary integrals

Virtually all final working formulae obtained in the present paper are given in terms of the basic integrals \(E_n(z)\) and \(a_n(z)\). They are defined through the integral representations

$$\begin{aligned} E_n(z)&= \int _1^\infty dt\, \frac{e^{-z t}}{t^n}, \end{aligned}$$
(61)
$$\begin{aligned} a_n(z)&= \int _0^1 dt\, t^n e^{-z t}, \end{aligned}$$
(62)

where n is an arbitrary integer in the former and a nonnegative integer in the latter. Calculation of \(a_n\) is most easily carried out with help of the Miller algorithm [49] as discussed by Harris [22]. The integral \(E_n\) is usually called the generalised exponential integral. Computation of \(E_n\) differs depending on the sign of n. For a negative integer n the following recursion is completely stable in the upward direction

$$\begin{aligned} E_n(z) = -\frac{n}{z} E_{n-1}(z)+\frac{e^{-z}}{z}. \end{aligned}$$
(63)

For positive n and \(z<1\) one uses the series expansion

$$\begin{aligned} E_n(z) = \frac{(-z)^{n-1}}{(n-1)!}\left[ \varPsi (n)-\log z\right] -\sum _{\begin{array}{c} k=0 \\ k\ne n-1 \end{array}}^\infty \frac{(-z)^k}{k!\,(1-n+k)}, \end{aligned}$$
(64)

where \(\varPsi (n)\) is the digamma function at integer argument. The above infinite summations converge to the machine precision in, at most, few tens of terms. Finally, for positive n and \(z>1\) the continued fraction (CF) formula can be applied

$$\begin{aligned} E_n(z) = e^{-z} \left( \frac{1}{z+}\frac{p}{1+}\frac{1}{z+}\frac{p+1}{1+}\frac{2}{z+}\cdots \right) . \end{aligned}$$
(65)

To evaluate the CF one can use the Lentz algorithm [43]. The only inconvenience is that consecutive numerators and denominators in the Lentz scheme grow very quickly with the number of terms retained in Eq. (65). Therefore, it is necessary to rescale them from time to time by a small number to avoid numerical overflows. Let us also recall the leading terms of the large-order asymptotic expansions for \(E_n(z)\) and \(a_n(z)\) which read

$$\begin{aligned} E_n(z)&= \frac{e^{-z}}{n+z} + {\mathcal {O}}\left( \frac{1}{n^2}\right) , \end{aligned}$$
(66)
$$\begin{aligned} a_n(z)&= \frac{e^{-z}}{n-z} + {\mathcal {O}}\left( \frac{1}{n^2}\right) , \end{aligned}$$
(67)

where \(n>z\).

Appendix 2: Large-order asymptotic formulae for \(i_\mu (\alpha )\) and \(k_\mu (\alpha )\)

According to the work of Sidi et al. [47, 48] the modified spherical Bessel functions posses the following large-order expansions

$$\begin{aligned} i_\mu (z)&= \frac{\sqrt{\pi }}{2}\frac{(z/2)^\mu }{\varGamma (\mu +\frac{3}{2})}\sum _{m=0}^\infty \frac{b_m(z)}{(\mu +1/2)^m}, \end{aligned}$$
(68)
$$\begin{aligned} k_\mu (z)&= \frac{\sqrt{\pi }}{4}\frac{\varGamma (\mu +\frac{1}{2})}{(z/2)^{\mu +1}}\sum _{m=0}^\infty \frac{b_m(z)}{(\mu +1/2)^m}(-1)^m, \end{aligned}$$
(69)

as \(\mu \rightarrow \infty \) at a fixed z, where

$$\begin{aligned} b_m(z)=\sum _{k=1}^m (-1)^{m-k} \frac{S_{mk}}{k!} (z/2)^{2k}, \end{aligned}$$
(70)

for \(m>0\) and \(b_0(z)=1\). The quantities \(S_{mk}\) in the above expression are the Stirling numbers of the second kind [43] defined recursively as

$$\begin{aligned} S_{m0}&=\delta _{m0},\;\;\; S_{m1}=1,\;\;\; S_{mm}=1, \end{aligned}$$
(71)
$$\begin{aligned} S_{mk}&=S_{m-1,k-1}+k S_{m-1,k}, \end{aligned}$$
(72)

and we additionally adapt the convention \(S_{mk}=0\) for \(m<k\) or \(m<0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesiuk, M. Calculation of STOs electron repulsion integrals by ellipsoidal expansion and large-order approximations. J Math Chem 54, 572–591 (2016). https://doi.org/10.1007/s10910-015-0576-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0576-5

Keywords

Navigation