Skip to main content
Log in

SuperSpec, The On-Chip Spectrometer: Improved NEP and Antenna Performance

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

SuperSpec is a new technology for mm and sub-mm spectroscopy. It is an on-chip spectrometer being developed for multi-object, moderate-resolution (\(R\sim 300\)), large bandwidth survey spectroscopy of high-redshift galaxies for the 1 mm atmospheric window. This band accesses the CO ladder in the redshift range of \(z =\) 0–4 and the [CII] 158 \(\upmu \)m line from redshift \(z =\)  5–9. SuperSpec employs a novel architecture in which detectors are coupled to a series of resonant filters along a single microwave feedline instead of using dispersive optics. This construction allows for the creation of a full spectrometer occupying only \(\sim 10\,\hbox {cm}^2\) of silicon, a reduction in size of several orders of magnitude when compared to standard grating spectrometers. This small profile enables the production of future multi-beam spectroscopic instruments envisioned for the millimeter band to measure the redshifts of dusty galaxies efficiently. The SuperSpec collaboration is currently pushing toward the deployment of a SuperSpec demonstration instrument in fall of 2018. The progress with the latest SuperSpec prototype devices is presented; reporting increased responsivity via a reduced inductor volume (2.6 \(\upmu \hbox {m}^3\)) and the incorporation of a new broadband antenna. A detector NEP of 3–4 \(\times 10^{-18}\) W/Hz\(^{0.5}\) is obtained, sufficient for background-limited observation on mountaintop sites. In addition, beam maps and efficiency measurements of a new wide-band dual bow-tie slot antenna are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Wheeler, S. Hailey-Dunsheath, E. Shirokoff, P.S. Barry, C.M. Bradford, S. Chapman, G. Che, J. Glenn, M. Hollister, A. Kovács, H.G. LeDuc, P. Mauskopf, R. McGeehan, C.M. McKenney, R. OBrient, S. Padin, T. Reck, C. Rosset, C. Shiu, C.E. Tucker, R. Williamson, J. Zmuidzinas, Proc. SPIE (2016). https://doi.org/10.1117/12.2233798

    Article  Google Scholar 

  2. S. Hailey-Dunsheath, E. Shirokoff, P.S. Barry, C.M. Bradford, S. Chapman, G. Che, J. Glenn, M. Hollister, A. Kovács, H.G. LeDuc, P. Mauskopf, C. McKenney, R. OBrient, S. Padin, T. Reck, C. Shiu, C.E. Tucker, J. Wheeler, R. Williamson, J. Zmuidzinas, J. Low Temp. Phys. 84, 180 (2016). https://doi.org/10.1007/s10909-015-1375-x

    Article  ADS  Google Scholar 

  3. S. Hailey-Dunsheath, E. Shirokoff, P.S. Barry, C.M. Bradford, G. Chattopadhyay, P. Day, S. Doyle, M. Hollister, A. Kovács, H.G. LeDuc, P. Mauskopf, C.M. McKenney, R. Monroe, R. O’Brient, S. Padin, T. Reck, L. Swenson, C.E. Tucker, J. Zmuidzinas, Proc. SPIE (2014). https://doi.org/10.1117/12.2057229

    Article  Google Scholar 

  4. A. Kovács, P.S. Barry, C.M. Bradford, G. Chattopadhyay, P. Day, S. Doyle, S. Hailey-Dunsheath, M. Hollister, C. McKenney, H.G. LeDuc, N. Llombart, D.P. Marrone, P. Mauskopf, R.C. OBrient, S. Padin, L.J. Swenson, J. Zmuidzinas, Proc. SPIE 8452, 84522G84522G10 (2012). https://doi.org/10.1117/12.927160

    Article  ADS  Google Scholar 

  5. E. Shirokoff, P.S. Barry, C.M. Bradford, G. Chattopadhyay, P. Day, S. Doyle, S. Hailey-Dunsheath, M.I. Hollister, A. Kovács, C. McKenney, H.G. Leduc, N. Llombart, D.P. Marrone, P. Mauskopf, R. O’Brient, S. Padin, T. Reck, L.J. Swenson, J. Zmuidzinas, Proc. SPIE (2012). https://doi.org/10.1117/12.927070

    Article  Google Scholar 

  6. P.S. Barry, E. Shirokoff, A. Kovács, T.J. Reck, S. Hailey-Dunsheath, C.M. McKenney, L.J. Swenson, M.I. Hollister, H.G. Leduc, S. Doyle, R. O’Brient, N. Llombart, D. Marrone, G. Chattopadhyay, P.K. Day, S. Padin, C.M. Bradford, P.D. Mauskopf, J. Zmuidzinas, Proc. SPIE (2012). https://doi.org/10.1117/12.927089

    Article  Google Scholar 

  7. A.T. Crites, J.J. Bock, C.M. Bradford, T.C. Chang, A.R. Cooray, L. Duband, Y. Gong, S. Hailey-Dunsheath, J. Hunacek, P.M. Koch, C.T. Li, R.C. O’Brient, T. Prouve, E. Shirokoff, M.B. Silva, Z. Staniszewski, B. Uzgil, M. Zemcov, Proc. SPIE (2014). https://doi.org/10.1117/12.2057207

    Article  Google Scholar 

  8. R. McGeehan, Noise performance of SuperSpec: an on-chip, TiN KID based mm-wave spectrometer. J. Low Temp. Phys. This Special Issue LTD17 (2018) (under review)

  9. J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3(1), 169–214 (2012). https://doi.org/10.1146/annurev-conmatphys-020911-125022

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by NASA Space Technology Research Fellowship NSTRF NNX15AQ09H and NSF AST ATI Grant 1407457.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan Wheeler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wheeler, J., Hailey-Dunsheath, S., Shirokoff, E. et al. SuperSpec, The On-Chip Spectrometer: Improved NEP and Antenna Performance. J Low Temp Phys 193, 408–414 (2018). https://doi.org/10.1007/s10909-018-1926-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1926-z

Keywords

Navigation