Skip to main content
Log in

Moisture Sorption Isotherms and Properties of Sorbed Water of Neem (Azadirichta indica A. Juss) Kernels

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A neem tree growing abundantly in India as well as in some regions of Asia and Africa gives fruits whose kernels have about 40–50% oil. This oil has high therapeutic and cosmetic qualities and is recently projected to be an important raw material for the production of biodiesel. Its seed is harvested at high moisture contents, which leads tohigh post-harvest losses. In the paper, the sorption isotherms are determined by the static gravimetric method at 40, 50, and 60°C to establish a database useful in defining drying and storage conditions of neem kernels. Five different equations are validated for modeling the sorption isotherms of neem kernels. The properties of sorbed water, such as the monolayer moisture content, surface area of adsorbent, number of adsorbed monolayers, and the percent of bound water are also defined. The critical moisture content necessary for the safe storage of dried neem kernels is shown to range from 5 to 10% dry basis, which can be obtained at a relative humidity less than 65%. The isosteric heats of sorption at 5% moisture content are 7.40 and 22.5 kJ/kg for the adsorption and desorption processes, respectively. This work is the first, to the best of our knowledge, to give the important parameters necessary for drying and storage of neem kernels, a potential raw material for the production of oil to be used in pharmaceutics, cosmetics, and biodiesel manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ousseynou, Production artisanale d’huile de Neem, ABC Consulting Aly. Sow/CAC, 207–219, Sénégal (2011).

  2. O. Neya, Etude des stades de développement des fruits de Neem (Azadirachta indica A. Juss), Mémoire de Fin d’études, Université Polytechnique de Bobodioulasso (1999).

  3. A. Karmakar, S. Karmakar, and S. Mukherjee, Biodiesel production from neem towards feedstock diversification: Indian perspective, Renew. Sust. Energy Rev., 16, 1050–1060 (2012).

    Article  Google Scholar 

  4. H. Muthu, V. Sathya Selvabala, T. K. Varathachary, D. Kirupha Selvaraj, J. Nandagopal, and S. Subramanian, Synthesis of biodiesel from neem oil using sulfated zirconia via transesterification, Braz. J. Chem. Eng., 27, No. 4, 601–608 (2010).

    Google Scholar 

  5. H. Mulimani, O. D. Hebbal, and M. C. Navindgi, Extraction of biodiesel from vegetable oils and their comparisons, Int. J. Adv. Sci. Res. Technol., 2, No. 2, 242–250 (2012).

  6. S. Khandelwal and Y. R. Chauhan, Biodiesel production from non-edible oils: A Review, J. Chem. Pharm. Res., 4, No. 9, 4219–4230 (2012).

    Google Scholar 

  7. S. H. Tirumala, A. V. Rohit, M. Siva-Krishna, and S. Saha, Synthesis of neem biodiesel, Int. J. Adv. Sci. Res. Technol., 3, No. 1, 316–318 (2012).

    Google Scholar 

  8. T. Sathya and A. Manivannan, Biodiesel production from neem oil using two step transesterification, Int. J. Eng. Res. Appl., 3, No. 3, 488–492 (2013).

  9. D. Tanwar, D. S. Ajayta, and Y. P. Mathur, Production and characterization of neem oil methyl ester, Int. J. Eng. Res. Technol., 2, No. 5, 1896–1903 (2013).

    Google Scholar 

  10. C. M. Ngono Mbarga, Etude des Isothermes de Sorption des Grains de Neem (Azadirichta indica Juss), MSc Thesis, Dept. Chemistry, Higher Teachers' Training College, University of Maroua, Cameroon (2013).

  11. D. Bup Nde, Physical Properties, Moisture Sorption Isotherms and the Indirect Solar Drying of Sheanut Kernels, Ph. D. Thesis, ENSAI, University of Ngaoundere, Cameroon (2010).

  12. D. Bup Nde, C. Abi Fon, D. Tenin, C. Kapseu, C. Tchiégang, and Z. Mouloungui, Effect of cooking on moisture sorption isotherms of sheanut (Vitellaria paradoxa Gaertn.) kernels. Part II. Modelling and properties of sorbed water, Food Bioproc. Technol., 6, 3273–3283 (2013).

  13. C. Kapseu, G. B. Nkouam, M. Dirand, D. Barth, L. Perrin, and C. Tchiégang, Water vapour isotherms of sheanut kernels (Vitellaria paradoxa Gaertn.), J. Food Technol., 4, 235–241 (2006).

  14. M. L. Pollio, S. L. Resnik, and J. Chirife, Water sorption isotherms of soybean varieties grown in Argentina, Int. J. Food Sci. Technol., 22, 335–338 (1987).

    Article  Google Scholar 

  15. C. Chen, A rapid method to determine the sorption isotherms of peanuts, J. Agric. Eng. Res., 75, 401–408 (2000).

    Article  Google Scholar 

  16. O. O. Ajibola, N. A. Aviara, and V. K. Abodunrin, Moisture, sorption equilibrium and thermodynamic properties of palm kernel, Int. Agrophys., 19, 273–283 (2005).

    Google Scholar 

  17. M. Socandé, J. Buintik, and F. A. Hoekstra, A study of water relations in neem (Azadirachta indica) seed that is characterized by complex storage behavior, J. Exp. Biol., 51, 635–643 (2000).

    Google Scholar 

  18. A. Sharma and G. Bhattacharyya Krishna, Adsorption of chromium (VI) on Azadirachta indica (neem) leaf powder, Adsorption, 10, 327–338 (2004).

    Article  Google Scholar 

  19. S. P. Raghuvanshi, R. Singh, and C. P. Kaushik, Adsorption of Congo red dye from aqueous solutions using neem leaves as adsorbent, Asian J. Chem., 20, No. 7, 4994–5000 (2008).

    Google Scholar 

  20. G. Pandhare. N. Trivedi, N. Kanse, and S. D. Dawande, Synthesis of low cost adsorbent from Azadirachta indica (neem) leaf powder, Int. J. Adv. Sci. Res. Technol., 3, 29–31 (2013).

  21. S. Navarro and E. Donahaye, Innovative environmentally friendly technologies to maintain quality of durable agricultural produce, in: S. Ben-Yehoshua (Ed.), Environmentally Friendly Technologies for Agricultural Produce Quality, CRC, Boca Raton (2005).

  22. L. Greenspan, Humidity fixed point of binary saturated aqueous solution, J. Res. Natl. Bur. Stand., 81, 89–96 (1977).

    Article  Google Scholar 

  23. T. P. Labuza, Moisture Sorption: Practical Aspects of Isotherm Measurement and Use, American Association of Cereal Chemists, St. Paul, Minnesota (1984).

  24. H. Bizot, Using GAB model to construct sorption isotherms, in: J. Jowitt (Ed.), Physical Properties of Food, Appl. Sci. Publishers, London and New York (1989).

  25. M. Caurie, Derivation of full range moisture sorption isotherms, in: L. B. Rockland and G. F. Stewart (Eds), Water Activity: Influences on Food Quality, Academic Press, New York (1981).

    Google Scholar 

  26. J. K. Rao, A. D. P. Heartwin, E. E. F. Magdaline, B. C. Ghosh, B. V. Balasubramanyam, and S. Kulkarni, Moisture sorption characteristics of chhana podo at 5°C and 35°C, J. Food Eng., 76, 453–459 (2006).

    Article  Google Scholar 

  27. H. A. Iglesias and J. Chirife, Isosteric heats of water vapour sorption on dehydrated foods. Part 1. Analysis of the differential heat curves, Lebensm.-Wiss. Technol., 9, 116–122 (1976).

  28. H. A. Iglesias and J. Chirifie, Water sorption parameters for food and food components, Handbook of Food Isotherms, Academic Press, New York (1982).

  29. M. Kouhila, N. Kechaou, M. Otmani, M. Fliyou, and S. Lahsasni, Experimental study of sorption isotherm and drying kinetics of Moroccan Eucalyptus globules, Drying Technol., 20, No. 10, 2027–2039 (2002).

    Article  Google Scholar 

  30. P. J. Do Amaral Sobral, A. Lebert, and J. J. Bimbenet, Isotherme de désorption de la pomme de terre entre 40 et 70°C, Sci. Alim., 19, No. 6, 711–720 (1999).

  31. A. S. Cassini, L. D. F. Marczak, and C. P. Z. Norena, Water adsorption isotherms of texturized soy protein, J. Food Eng., 77, 194–199 (2006).

    Article  Google Scholar 

  32. A. Belarbi, C. Aymard, J. M. Meot, A. Themelin, and M. Reynes, Water desorption isotherms for eleven varieties of dates, J. Food Eng., 43, No. 2, 103–107 (2000).

    Article  Google Scholar 

  33. A. Ferradji, M. A. A. Matallah, and A. Malek, Conservation des dattes Deglet nour isotherme d’adsorption à 25, 30 et 40°C, Rev. Energ. Renouv., 207–219 (2008).

  34. D. Bup Nde, C. Abi Fon, G. B. Nkouam, D. Tenin, C. Kapseu, C. Tchiegang, and Z. Mouloungui, Effect of cooking on moisture sorption isotherms of sheanut (Vitellaria Paradoxa Gaertn) kernels: Evidence from light and scanning electron microscopy, Food Bioproc. Technol., 6, No. 8, 1897–1906 (2013).

    Article  Google Scholar 

  35. S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of gases on multimolecular layers, J. Am. Chem. Soc., 60, 309–319 (1938).

    Article  Google Scholar 

  36. R. Oswin, The kinetics of package life — III. The isotherm, J. Chem. Ind., 65, 419–423 (1946).

  37. S. E. Smith, The sorption of water vapor high polymers, J. Am. Chem. Soc., 69, 646–651 (1947).

    Article  Google Scholar 

  38. G. Halsey, Physical adsorption on non-uniform surfaces, J. Chem. Phys., 16, 931–937 (1948).

    Article  Google Scholar 

  39. F. Kaymak-Ertekin and A. Gedik, Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes, Lebensm.-Wiss. Technol., 37, 429–438 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bup Nde.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 90, No. 1, pp. 40–47, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngono Mbarga, M.C., Bup Nde, D., Mohagir, A. et al. Moisture Sorption Isotherms and Properties of Sorbed Water of Neem (Azadirichta indica A. Juss) Kernels. J Eng Phys Thermophy 90, 35–42 (2017). https://doi.org/10.1007/s10891-017-1536-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-017-1536-7

Keywords

Navigation