Skip to main content
Log in

Tetanic stimulation of the peripheral nerve augments motor evoked potentials by re-exciting spinal anterior horn cells

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Tetanic stimulation of the peripheral nerve, immediately prior to conducting transcranial electrical stimulation motor evoked potential (TES-MEP), increases MEP amplitudes in both innervated and uninnervated muscles by the stimulated peripheral nerve; this is known as the remote augmentation of MEPs. Nevertheless, the mechanisms underlying the remote augmentation of MEPs remain unclear. Although one hypothesis was that remote augmentation of MEPs results from increased motoneuronal excitability at the spinal cord level, the effect of spinal anterior horn cells has not yet been investigated. We aimed to investigate the effect of tetanic stimulation of the peripheral nerve on spinal cord anterior horn cells by analyzing the F-wave. We included 34 patients who underwent elective spinal surgeries and compared the changes in F-waves and TES-MEPs pre- and post-tetanic stimulation of the median nerve. F-wave analyses were recorded by stimulating the median and tibial nerves. TES-MEPs and F-wave analyses were compared between baseline and post-tetanic stimulation time periods using Wilcoxon signed-rank tests. A significant augmentation of MEPs, independent of the level corresponding to the median nerve, was demonstrated. Furthermore, F-wave persistence was significantly increased not only in the median nerve but also in the tibial nerve after tetanic stimulation of the median nerve. The increased F-wave persistence indicates an increase of re-excited motor units in spinal anterior horn cells. These results confirm the hypothesis that tetanic stimulation of the peripheral nerve may cause remote augmentation of MEPs, primarily by increasing the excitability of the anterior horn cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets during and/or analysed during the current study available from the first author, Yusuke Yamamoto on reasonable request.

Code availability

Not applicable.

References

  1. Calancie B, Harris W, Brindle GF, Green BA, Landy HJ. Threshold-level repetitive transcranial electrical stimulation for intraoperative monitoring of central motor conduction. J Neurosurg Spine. 2001;95:161–8. https://doi.org/10.3171/spi.2001.95.2.0161.

    Article  CAS  Google Scholar 

  2. Kawaguchi M, Furuya H. Intraoperative spinal cord monitoring of motor function with myogenic motor evoked potentials: a consideration in anesthesia. J Anesth. 2004;18:18–28. https://doi.org/10.1007/s00540-003-0201-9.

    Article  PubMed  Google Scholar 

  3. Jameson LC, Sloan TB. Neurophysiologic monitoring in neurosurgery. Anesthesiol Clin. 2012;30:311–31. https://doi.org/10.1016/j.anclin.2012.05.005.

    Article  PubMed  Google Scholar 

  4. Woodforth IJ, Hicks RG, Crawford MR, Stephen JP, Burke DJ. Variability of motor-evoked potentials recorded during nitrous oxide anesthesia from the tibialis anterior muscle after transcranial electrical stimulation. Anesth Analg. 1996;82:744–9. https://doi.org/10.1097/00000539-199604000-00012.

    Article  CAS  PubMed  Google Scholar 

  5. Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol. 2002;19:430–43. https://doi.org/10.1097/00004691-200210000-00006.

    Article  PubMed  Google Scholar 

  6. Lotto ML, Banoub M, Schubert A. Effects of anesthetic agents and physiologic changes on intraoperative motor evoked potentials. J Neurosurg Anesth. 2004;16:32–42. https://doi.org/10.1097/00008506-200401000-00008.

    Article  Google Scholar 

  7. Kakimoto M, Kawaguchi M, Yamamoto Y, Inoue S, Horiuchi T, Nakase H, Sakaki T, Furuya H. Tetanic stimulation of the peripheral nerve before transcranial electrical stimulation can enlarge amplitudes of myogenic motor evoked potentials during general anesthesia with neuromuscular blockade. Anesthesiology. 2005;102:733–8.

    Article  Google Scholar 

  8. Yamamoto Y, Kawaguchi M, Hayashi H, Abe R, Inoue S, Nakase H, Sakaki T, Furuya H. Evaluation of posttetanic motor evoked potentials—the influences of repetitive use, the residual effects of tetanic stimulation to peripheral nerve, and the variability. J Νeurosurg Αnesth. 2010;22:6–10. https://doi.org/10.1097/ANA.0b013e3181b9dd3a.

    Article  Google Scholar 

  9. Hayashi H, Kawaguchi M, Yamamoto Y, Inoue S, Koizumi M, Ueda Y, Takakura Y, Furuya H. The application of tetanic stimulation of the unilateral tibial nerve before transcranial stimulation can augment the amplitudes of myogenic motor-evoked potentials from the muscles in the bilateral upper and lower limbs. Anesth Αnalg. 2008;107:215–20. https://doi.org/10.1213/ane.0b013e318177082e.

    Article  Google Scholar 

  10. Shigematsu H, Kawaguchi M, Hayashi H, Takatani T, Iwata E, Tanaka M, Okuda A, Morimoto Y, Masuda K, Yamamoto Y, Tanaka Y. Post-tetanic transcranial motor evoked potentials augment the amplitude of compound muscle action potentials recorded from innervated and non-innervated muscles. Spine J. 2018;18:740–6. https://doi.org/10.1016/j.spinee.2017.08.249.

    Article  PubMed  Google Scholar 

  11. Hayashi H, Kawaguchi M, Yamamoto Y, Inoue S, Koizumi M, Ueda Y, Takakura Y, Furuya H. Evaluation of reliability of post-tetanic motor-evoked potential monitoring during spinal surgery under general anesthesia. Spine. 2008;33:E994-e1000. https://doi.org/10.1097/BRS.0b013e318188adfc.

    Article  PubMed  Google Scholar 

  12. Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG. Modulation of human corticomotor excitability by somatosensory input. J Physiol. 2002;540:623–33. https://doi.org/10.1113/jphysiol.2001.012801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun S, Tian FB, Huang SQ, Zhang J, Liang WM. Different effects of tetanic stimulation of facial nerve and ulnar nerve on transcranial electrical stimulation motor-evoked potentials. Int J Clin Exp Med. 2014;7:622–30.

    PubMed  PubMed Central  Google Scholar 

  14. Mercuri B, Wassermann EM, Manganotti P, Ikoma K, Samii A, Hallett M. Cortical modulation of spinal excitability: an F-wave study. Electroen Clin Neuro. 1996;101:16–24. https://doi.org/10.1016/0013-4694(95)00164-6.

    Article  CAS  Google Scholar 

  15. Shigematsu H, Kawaguchi M, Hayashi H, Takatani T, Iwata E, Tanaka M, Okuda A, Morimoto Y, Masuda K, Tanaka Y, Tanaka Y. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Spine J. 2017;17:1472–9. https://doi.org/10.1016/j.spinee.2017.05.004.

    Article  PubMed  Google Scholar 

  16. Tanaka M, Shigematsu H, Kawaguchi M, Hayashi H, Takatani T, Iwata E, Okuda A, Morimoto Y, Kawasaki S, Masuda K, Yamamoto Y, Tanaka Y. Muscle-evoked potentials after electrical stimulation to the brain in patients undergoing spinal surgery are less affected by anesthetic fade with constant-voltage stimulation than with constant-current stimulation. Spine. 2019;44:1492–8. https://doi.org/10.1097/brs.0000000000003166.

    Article  PubMed  Google Scholar 

  17. Macdonald DB. Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput. 2006;20:347–77. https://doi.org/10.1007/s10877-006-9033-0.

    Article  PubMed  Google Scholar 

  18. Jones SJ, Harrison R, Koh KF, Mendoza N, Crockard HA. Motor evoked potential monitoring during spinal surgery: responses of distal limb muscles to transcranial cortical stimulation with pulse trains. Electroen Clin Neuro. 1996;100:375–83. https://doi.org/10.1016/0168-5597(96)95728-7.

    Article  CAS  Google Scholar 

  19. Pechstein U, Cedzich C, Nadstawek J, Schramm J. Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery. 1996;39:335–43. https://doi.org/10.1097/00006123-199608000-00020.

    Article  CAS  PubMed  Google Scholar 

  20. Lyon R, Feiner J, Lieberman JA. Progressive suppression of motor evoked potentials during general anesthesia: the phenomenon of “anesthetic fade.” J Neurosurg Anesth. 2005;17:13–9.

    Google Scholar 

  21. El-Hawary R, Sucato DJ, Sparagana S, McClung A, Van Allen E, Rampy P. Spinal cord monitoring in patients with spinal deformity and neural axis abnormalities: a comparison with adolescent idiopathic scoliosis patients. Spine. 2006;31:E698-706. https://doi.org/10.1097/01.brs.0000232707.98076.37.

    Article  PubMed  Google Scholar 

  22. Calancie B, Molano MR. Alarm criteria for motor-evoked potentials: what’s wrong with the “presence-or-absence” approach? Spine. 2008;33:406–14. https://doi.org/10.1097/BRS.0b013e3181642a2f.

    Article  PubMed  Google Scholar 

  23. Journee HL, Polak HE, de Kleuver M, Langeloo DD, Postma AA. Improved neuromonitoring during spinal surgery using double-train transcranial electrical stimulation. Med Biol Eng Comput. 2004;42:110–3. https://doi.org/10.1007/bf02351019.

    Article  CAS  PubMed  Google Scholar 

  24. Tsutsui S, Iwasaki H, Yamada H, Hashizume H, Minamide A, Nakagawa Y, Nishi H, Yoshida M. Augmentation of motor evoked potentials using multi-train transcranial electrical stimulation in intraoperative neurophysiologic monitoring during spinal surgery. J Clin Monit Comput. 2015;29:35–9. https://doi.org/10.1007/s10877-014-9565-7.

    Article  PubMed  Google Scholar 

  25. MacDonald DB. Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol. 2002;19:416–29. https://doi.org/10.1097/00004691-200210000-00005.

    Article  PubMed  Google Scholar 

  26. Kim JS, Choi Y, Jin SH, Kim CH, Park CK, Kim SM, Lee KW, Chung CK, Paek SH. Effect of peripheral nerve tetanic stimulation on the inter-trial variability and accuracy of transcranial motor-evoked potential in brain surgery. Clin Neurophysiol. 2016;127:2208–13. https://doi.org/10.1016/j.clinph.2016.01.018.

    Article  PubMed  Google Scholar 

  27. Yamamoto Y, Kawaguchi M, Hayashi H, Horiuchi T, Inoue S, Nakase H, Sakaki T, Furuya H. The effects of the neuromuscular blockade levels on amplitudes of posttetanic motor-evoked potentials and movement in response to transcranial stimulation in patients receiving propofol and fentanyl anesthesia. Anesth Analg. 2008;106:930–4. https://doi.org/10.1213/ane.0b013e3181617508.

    Article  CAS  PubMed  Google Scholar 

  28. Ali HH, Savarese JJ. Monitoring of neuromuscular function. Anesthesiology. 1976;45:216–49. https://doi.org/10.1097/00000542-197608000-00009.

    Article  CAS  PubMed  Google Scholar 

  29. Wali FA, Bradshaw EG, Suer AH. Clinical assessment of neuromuscular blockade produced by vecuronium using twitch, train of four, tetanus and post-tetanic twitch responses of the adductor pollicis muscle. Acta Anaesth Belg. 1988;39:35–42.

    CAS  PubMed  Google Scholar 

  30. Andersson G, Ohlin A. Spatial facilitation of motor evoked responses in monitoring during spinal surgery. Clin Neurophysiol. 1999;110:720–4. https://doi.org/10.1016/s1388-2457(98)00049-2.

    Article  CAS  PubMed  Google Scholar 

  31. Hamdy S, Rothwell JC, Aziz Q, Singh KD, Thompson DG. Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat Neurosci. 1998;1:64–8. https://doi.org/10.1038/264.

    Article  CAS  PubMed  Google Scholar 

  32. Mesrati F, Vecchierini MF. F-waves: neurophysiology and clinical value. Clin Neurophysiol. 2004;34:217–43. https://doi.org/10.1016/j.neucli.2004.09.005.

    Article  CAS  Google Scholar 

  33. Fisher MA. F-waves-physiology and clinical uses. Sci World J. 2007;7:144–60. https://doi.org/10.1100/tsw.2007.49.

    Article  Google Scholar 

  34. Rossini PM, Rossi S, Pasqualetti P, Tecchio F. Corticospinal excitability modulation to hand muscles during movement imagery. Cerebral Cortex. 1999;9:161–7. https://doi.org/10.1093/cercor/9.2.161.

    Article  CAS  PubMed  Google Scholar 

  35. Jerath NU, Aul E, Reddy CG, Azadeh H, Swenson A, Kimura J. Prolongation of F-wave minimal latency: a sensitive predictor of polyneuropathy. Int J Neurosci. 2015;126:520–5. https://doi.org/10.3109/00207454.2015.1040492.

    Article  PubMed  Google Scholar 

  36. Nakazumi Y, Watanabe Y. F-wave elicited during voluntary contraction as a monitor of upper motor neuron disorder. Electromyogr Clin Neurophysiol. 1992;32:631–5.

    CAS  PubMed  Google Scholar 

  37. Hagbarth KE. Post-tetanic potentiation of myotatic reflexes in man. J Neurol Neurosurg Psychiatry. 1962;25:1–10. https://doi.org/10.1136/jnnp.25.1.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hultborn H, Nielsen JB. H-reflexes and F-responses are not equally sensitive to changes in motoneuronal excitability. Muscle Nerve. 1995;18:1471–4. https://doi.org/10.1002/mus.880181219.

    Article  CAS  PubMed  Google Scholar 

  39. Guerit JM. Neuromonitoring in the operating room: why, when, and how to monitor? Electroen Clin Neurophysiol. 1998;106:1–21. https://doi.org/10.1016/s0013-4694(97)00077-1.

    Article  CAS  Google Scholar 

  40. Rampil IJ, King BS. Volatile anesthetics depress spinal motor neurons. Anesthesiology. 1996;85:129–34. https://doi.org/10.1097/00000542-199607000-00018.

    Article  CAS  PubMed  Google Scholar 

  41. Kammer T, Rehberg B, Menne D, Wartenberg HC, Wenningmann I, Urban BW. Propofol and sevoflurane in subanesthetic concentrations act preferentially on the spinal cord: evidence from multimodal electrophysiological assessment. Anesthesiology. 2002;97:1416–25. https://doi.org/10.1097/00000542-200212000-00013.

    Article  CAS  PubMed  Google Scholar 

  42. Mason P, Owens CA, Hammond DL. Antagonism of the antinocifensive action of halothane by intrathecal administration of GABAA receptor antagonists. Anesthesiology. 1996;84:1205–14. https://doi.org/10.1097/00000542-199605000-00023.

    Article  CAS  PubMed  Google Scholar 

  43. Antognini JF, Carstens E, Buzin V. Isoflurane depresses motoneuron excitability by a direct spinal action: an F-wave study. Anesth Analg. 1999;88:681–5. https://doi.org/10.1097/00000539-199903000-00040.

    Article  CAS  PubMed  Google Scholar 

  44. Garcia PS, Kolesky SE, Jenkins A. General anesthetic actions on GABA(A) receptors. Curr Neuropharmacol. 2010;8:2–9. https://doi.org/10.2174/157015910790909502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics. N Engl J Med. 2003;348:2110–24. https://doi.org/10.1056/NEJMra021261.

    Article  CAS  PubMed  Google Scholar 

  46. Pilurzi G, Ginatempo F, Mercante B, Cattaneo L, Pavesi G, Rothwell JC, Deriu F (2020) Role of cutaneous and proprioceptive inputs in sensorimotor integration and plasticity occurring in the facial primary motor cortex. J Physiol 598: 839–851. https://doi.org/10.1113/JP278877

  47. Fukumoto Y, Bunno Y, Suzuki T (2016) Effect of motor imagery on excitability of spinal neural function and its impact on the accuracy of movement-considering the point at which subjects subjectively determine the 50%MVC point. J Phys Ther Sci 28:3416–3420. https://doi.org/10.1589/jpts.28.3416

Download references

Acknowledgements

The authors thank Sayomi Yamamoto, Junko Kato, Shinobu Tado, Tomoshige Miyabayashi, and Ryohei Mizobata for their technical assistance with the TES-MEPs and F-wave trial.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

YY: designed the study, collected the data, performed the statistical analysis, and wrote the manuscript. HS: designed the study, collected the data, performed the statistical analysis, and wrote and edited the manuscript. MK: collected patients’ data and reviewed and approved the manuscript. HH: Collected patients’ data and reviewed and approved the manuscript. TT: collected patients’ data and reviewed and approved the manuscript. MT: collected patients’ data and reviewed and approved the manuscript. AO: collected patients’ data and reviewed and approved the manuscript. SK: collected patients’ data and reviewed and approved the manuscript. KM: collected patients’ data and reviewed and approved the manuscript. YS: collected patients’ data and reviewed and approved the manuscript. YT: collected patients’ data, provided critical feedback on the study, and reviewed and approved the manuscript.

Corresponding author

Correspondence to Hideki Shigematsu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest. All authors have approved the final article.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Institutional review board of Nara Medical University; Reference Number: 1915.

Consent to participate

The requirement for written consent from the study subjects was waived as an “opt-out” process.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, Y., Shigematsu, H., Kawaguchi, M. et al. Tetanic stimulation of the peripheral nerve augments motor evoked potentials by re-exciting spinal anterior horn cells. J Clin Monit Comput 36, 259–270 (2022). https://doi.org/10.1007/s10877-020-00647-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-020-00647-z

Keywords

Navigation