Skip to main content
Log in

A Comparative Study of the Nonlinear Optical Properties of CdnXn (X: S, Se and Te) Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We report results of hyperpolarizability calculations on CdnXn (X: S, Se and Te; n = 1–10) clusters. Our results show that the geometric configurations of different types of clusters under investigation are quite similar at specific values of n. Both static and frequency dependent components of first and second order hyperpolarizability tensors of CdnSn, CdnSen and CdnTen are compared. It is observed that in general nonlinear optical coefficients show identical variation in all the cluster materials. The present investigation also manifests the improvement of these coefficients due to the introduction of asymptotically correct generalized gradient approximation functional over the local density functional and normal gradient corrected functional. Symmetrized fragment orbital analysis has been performed to provide explanation of the observed hyperpolarizability variation. We also analyse how geometries with closely lying energy values influence the hyperpolarizabilities of these cluster materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. D. Bonin and V. V. Kresin, Electric dipole polarizabilities of atoms, molecules and clusters (World Scientific, Singapore, 1997).

    Book  Google Scholar 

  2. M. Lee, E. H. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee (2002). Science 298, 1401.

    Article  CAS  Google Scholar 

  3. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier (2000). Science 288, 119.

    Article  CAS  Google Scholar 

  4. J. Luo, M. Haller, H. Li, H. -Z. Tang, A. K. -Y. Jen, K. Jakka, C. -H. Chou, and C. -F. Shu (2004). Macromolecules 37, 248.

    Article  CAS  Google Scholar 

  5. C. Zhang, L. R. Dalton, M. C. Oh, H. Zhang, and W. H. Steier (2001). Chem. Mater. 13, 3043.

    Article  CAS  Google Scholar 

  6. W. L. Peticolas (1967). Annu. Rev. Phys. Chem. 18, 233.

    Article  CAS  Google Scholar 

  7. W. Denk, J. H. Stricker, and W. W. Webb (1990). Science 248, 73.

    Article  CAS  Google Scholar 

  8. C. W. Spangler (1999). J. Mater. Chem. 9, 2013.

    Article  CAS  Google Scholar 

  9. K. R. S. Chandrakumar, T. K. Ghanty, and S. K. Ghosh (2005). Int. J. Quant. Chem. 105, 166.

    Article  CAS  Google Scholar 

  10. G. Maroulis and C. Pouchan (2003). J. Phys. Chem. B 107, 10683.

    Article  CAS  Google Scholar 

  11. B. S. Santos, G. A. L. Pereira, D. V. Petrov, and C. de Mello Donegá (2000). Optics. Commun. 178, 187.

    Article  CAS  Google Scholar 

  12. M. C. Troparevsky and J. R. Chelikowsky (2001). J. Chem. Phys. 114, 943.

    Article  CAS  Google Scholar 

  13. G. Maroulis and C. Pouchan (2008). Chem. Phys. Lett. 464, 16.

    Article  CAS  Google Scholar 

  14. M. Jacobsohn and U. Banin (2000). J. Phys. Chem. B 104, 1.

    Article  CAS  Google Scholar 

  15. O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya (1995). Phys. Rev. B 51, 17591.

    Article  CAS  Google Scholar 

  16. P. Karamanis, G. Maroulis, and C. Pouchan (2006). J. Chem. Phys. 124, 071101.

    Article  Google Scholar 

  17. P. Karamanis, G. Maroulis, and C. Pouchan (2006). Chem. Phys. 331, 19.

    Article  CAS  Google Scholar 

  18. S. Sen and S. Chakrabarti (2006). Phys. Rev. B 74, 205435.

    Article  Google Scholar 

  19. P. C. Jha, P. Seal, S. Sen, H. Ågren, and S. Chakrabarti (2008). Comp. Mater. Sci. 44, 728.

    Article  CAS  Google Scholar 

  20. M. C. Troparevsky, L. Kronik, and J. R. Chelikowsky (2003). J. Chem. Phys. 119, 2284.

    Article  CAS  Google Scholar 

  21. S. Bhattacharya and A. Kshirsagar (2007). Phys. Rev. B 75, 035402.

    Article  Google Scholar 

  22. S. Mayilo, J. Hilhorst, A. S. Susha, C. Höhl, T. Franzl, T. A. Klar, A. L. Rogach, and J. Feldmann (2008). J. Phys. Chem. C 112, 14589.

    Article  CAS  Google Scholar 

  23. J. Sun, W. E. Buhro, L.-W. Wang, and J. Schrier (2008). Nano Lett. 8, 2913.

    Article  CAS  Google Scholar 

  24. P. Dagtepe, V. Chikan, J. Jasinski, and V. J. Leppert (2007). J. Phys. Chem. C 111, 14977.

    Article  CAS  Google Scholar 

  25. P. Karamanis and C. Pouchan (2009). Chem. Phys. Lett. 474, 162.

    Article  CAS  Google Scholar 

  26. P. Seal, S. Sen, and S. Chakrabarti (2010). Chem. Phys. 367, 152.

    Article  CAS  Google Scholar 

  27. M. J. Frisch et al., GAUSSIAN 03 (Gaussian Inc., Walingford, CT, 2004).

  28. A. D. Becke (1993). J. Chem. Phys. 98, 1372.

    Article  CAS  Google Scholar 

  29. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  30. R. van Leeuwen and E. J. Baerends (1994). Phys. Rev. A 49, 2421.

    Article  Google Scholar 

  31. A. D. Becke (1988). Phys. Rev. A 38, 3098.

    Article  CAS  Google Scholar 

  32. J. P. Perdew, K. Burke, and M. Emzerhof (1996). Phys. Rev. Lett. 77, 3865.

    Article  CAS  Google Scholar 

  33. S. J. A. van Gisbergen, J. G. Snijders, and E. J. Baerends (1998). J. Chem. Phys. 109, 10644.

    Article  Google Scholar 

  34. S. J. A. van Gisbergen, J. G. Snijders, and E. J. Baerends (1998). J. Chem. Phys. 109, 10657.

    Article  Google Scholar 

  35. S. Sen, P. Seal, and S. Chakrabarti (2007). Phys. Rev. B 76, 115414.

    Article  Google Scholar 

  36. P. Deglmann, R. Ahlrichs, and K. Tsereteli (2002). J. Chem. Phys. 116, 1585.

    Article  CAS  Google Scholar 

  37. S. M. Ma, J. T. Seo, Q. Yang, R. Battle, L. Creekmore, K. Lee, B. Tabibi, and W. Yu (2007). Appl. Surf. Sci. 253, 6612.

    Article  CAS  Google Scholar 

  38. P. Chin, J. Stouwdam, S. van Bavel, and R. Janssen (2008). Nanotechnology 19, 205602.

    Article  Google Scholar 

Download references

Acknowledgments

S. C. acknowledges the financial support (UPE project) for providing us the 8 CPU clusters. S. Sen acknowledges Prof. A. Guha, Director, JIS College of Engineering. P. Seal likes to thank UGC, Govt. of India for the financial assistance. The authors acknowledge the financial support from DST, Govt. of India (Under FIST Program) to purchase the Gaussian 03 program. The financial support from UGC, Govt. of India (Xth plan) to purchase the ADF program is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan Chakrabarti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10876_2010_337_MOESM1_ESM.pdf

Average values of the static and frequency dependent first and second order hyperpolarizability tensors at different levels of theory and the optimized energies of all CdnXn clusters (n = 1–10). (PDF 771 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, S., Seal, P. & Chakrabarti, S. A Comparative Study of the Nonlinear Optical Properties of CdnXn (X: S, Se and Te) Clusters. J Clust Sci 21, 591–609 (2010). https://doi.org/10.1007/s10876-010-0337-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-010-0337-3

Keywords

Navigation