Skip to main content
Log in

Corrosion characteristics of anodized Ti–(10–40wt%)Hf alloys for metallic biomaterials use

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The effect of anodizing on corrosion resistance of Ti–xHf alloys has been investigated. Ti–xHf alloys were prepared and anodized at 120, 170 and 220 V in 1 M H3PO4 solution, and crystallized at 300 and 500°C. Corrosion experiments were carried out using a potentiostat in 0.15 M NaCl solution at 36.5 ± 1°C. The Ti–xHf alloys exhibited the α′ and anatase phases. The pore size on the anodized surface increases as the applied voltage is increased, whereas the pore size decreases as the Hf content is increased. The anodized Ti–xHf alloys exhibited better corrosion resistance than non-anodized Ti–xHf alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rao S, Ushida T, Tateishi T, Okazaki Y, Asao S. Effect of Ti, Al and V ions on the relative growth rate of fibroblasts (L929) and osteoblast (MT3T3-E1) cells. J Biomed Mater Eng. 1996;6:79–86.

    CAS  Google Scholar 

  2. Kobayashi E, Gardner LK, Toth RW J. Titanium: the mystery metal of implant dentistry. Dental materials aspects. J Prosthet Dent. 1985;54:410–4.

    Article  Google Scholar 

  3. He G, Hagiwara M. Ti alloy design strategy for biomedical applications. Mater Sci Eng. 2006;C26:14–9.

    Google Scholar 

  4. Steinemann SG. In: Winter GD, Leray JL, de Groot K, editors. Evaluation of biomaterials. New York: John Wiley & Sons Ltd; 1980. p. 1–34.

    Google Scholar 

  5. McLachlan C, Farnell B, Galin H. In: Sarkar B, editor. Biological aspects of metals and metal-related diseases. New York: Raven Press; 1983. p. 209–18.

    Google Scholar 

  6. Perl DP, Brody AR. X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science. 1980;208:297–9.

    Article  CAS  Google Scholar 

  7. Sumner DR, Galante JO. Determinants of stress shielding: design versus materials versus interface. Clin Orthop Relat Res. 1992;274:202–12.

    Google Scholar 

  8. Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans. 2002;33:477–86.

    Article  Google Scholar 

  9. Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng. 1998;A243:231–6.

    CAS  Google Scholar 

  10. Long M, Rack HJ. Titanium alloys in total joint replacement-a materials science perspective. Biomater. 1998;19:1621–39.

    Article  CAS  Google Scholar 

  11. Saji VS, Choe HC. Electrochemical corrosion behaviour of nanotubular Ti–13Nb–13Zr alloy in Ringer’s solution. Corros Sci. 2009;51:1658–63.

    Article  CAS  Google Scholar 

  12. Jeong YH, Kim WG, Park GH, Choe HC, Ko YM. Surface characteristics of HA coated Ti–Hf binary alloys after nanotube formation. Trans Nonferr Metals Soc China. 2009;19:852–6.

    Article  CAS  Google Scholar 

  13. Cai Z, Koike M, Sato H, Brezner M, Guo Q, Komatsu M, Okuno O, Okabe T. Electrochemical characterization of cast Ti–Hf binary alloys. Acta Biomater. 2005;1:353–6.

    Article  CAS  Google Scholar 

  14. Jeong YH, Lee K, Choe HC, Ko YM, Brantley WA. Nanotube formation and morphology change of Ti alloys containing Hf for dental materials use. Thin Solid Films. 2009;517:5365–9.

    Article  CAS  Google Scholar 

  15. Zhou YL, Niinomi M. Passive films and corrosion resistance of Ti–Hf alloys in 5% HCl solution. Surf Coat Technol. 2009;204:180–6.

    Article  CAS  Google Scholar 

  16. Kubota S, Johkura K, Asanuma K, Okouchi Y, Ogiwara N, Sasaki K, Kasuga T. Titanium oxide nanotubes for bone regeneration. J Mater Sci Mater Med. 2004;15(9):1031–5.

    Article  CAS  Google Scholar 

  17. Kakoli D, Susmita B, Amit B. Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater. 2007;3:573–85.

    Article  Google Scholar 

  18. Limmer SJ, Chou TP, Cao GZ. A study on the growth of TiO2 nanorods using sol electrophoresis. J Mater Sci. 2004;39:895–901.

    Article  CAS  Google Scholar 

  19. Kim WG, Choe HC, Ko YM, Brantley WA. Nanotube morphology changes for Ti–Zr alloys as Zr content increases. Thin Solid Films. 2009;517(17):5033–7.

    Article  CAS  Google Scholar 

  20. Jang SH, Choe HC, Ko YM, Brantley WA. Electrochemical characteristics of nanotubes formed on Ti–Nb alloys. Thin Solid Films. 2009;517:5038–43.

    Article  CAS  Google Scholar 

  21. Saji VS, Choe HC, Brantley WA. Nanotubular oxide layer formation on Ti–13Nb–13Zr alloy as a function of applied potential. J Mater Sci. 2009;44:3975–82.

    Article  CAS  Google Scholar 

  22. Saji VS, Choe HC. Phenomena of nanotube nucleation and growth on new ternary titanium alloys. Acta Biomater. 2009;5:2303–10.

    Article  CAS  Google Scholar 

  23. Bai J, Zhou B, Li L, Liu Y, Zheng Q, Shao J, Zhu X, Cai W, Liao J, Zou L. J Mater Sci. 2008;43:1880–4.

    Article  CAS  Google Scholar 

  24. Zwilling V, Aucouturier M, Darque-Ceretti E. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim Acta. 1999;45:921–9.

    Article  CAS  Google Scholar 

  25. Jakubowicz J. Formation of porous TiO x biomaterials in H3PO4 electrolytes. Electrochem Commun. 2008;10:735–9.

    Article  CAS  Google Scholar 

  26. Song HJ, Kim MK, Jung GC, Vang MS, Park YJ. The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics. Surf Coat Technol. 2007;201:8738–45.

    Article  CAS  Google Scholar 

  27. Zhou YL, Niinomi M, Akahori T. Changes in mechanical properties of Ti alloys in relation to alloying additions of Ta and Hf. Mater Sci Eng. 2008;A483:153–6.

    Google Scholar 

  28. Oh HJ, Lee JH, Jeong YS, Kim YJ, Chi CS. Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method. Surf Coat Technol. 2005;198:247–52.

    Article  CAS  Google Scholar 

  29. Choe HC, Kim HS, Choi DC, Kim KH. Effects of alloying elements on the electrochemical characteristics of iron aluminides. J Mater Sci. 1997;32:1221–7.

    Article  CAS  Google Scholar 

  30. Choe HC, Jeong YH, Brantley WA. Phenomena of nanotube nucleation and growth on new ternary titanium alloys. J Nanosci Nanotech. 2010;10:4684–9.

    Article  CAS  Google Scholar 

  31. Narayanan R, Seshadri SK. Phosphoric acid anodization of Ti–6Al–4V—structural and corrosion aspects. Corros Sci. 2007;49:542–58.

    Article  CAS  Google Scholar 

  32. Mansfeld F. Advances in corrosion science and technology. In Fontana MG, Staehle RW, editors. 6th ed. Plenum Press: New York; 1976.

Download references

Acknowledgments

This research was supported by National Research Foundation of Korea (R13-2008-010-00000-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Cheol Choe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, YH., Choe, HC. & Brantley, W.A. Corrosion characteristics of anodized Ti–(10–40wt%)Hf alloys for metallic biomaterials use. J Mater Sci: Mater Med 22, 41–50 (2011). https://doi.org/10.1007/s10856-010-4188-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4188-0

Keywords

Navigation