Skip to main content
Log in

B-site doping of ZrO2 to improve the dielectric and energy storge performances of a BNBS-(Ti1−x,Zrx) ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A group of (0.65Bi0.5Na0.5–0.35Bi0.2Sr0.7)(Ti1−x,Zrx)O3 (BNBS-(Ti1−x,Zrx)) lead-free energy storage ceramic sheets are prepared by a conventional solid-state sintering method. We find that B-site doping of ZrO2 may minimize the grain size while not change the perovskite structure of BNBS-(Ti1−x,Zrx). As such, BNBS-(Ti1−x,Zrx) possesses the uniform grains and clear grain boundaries, resulting in a high dielectric permittivity (εr) of about 2080 and a low dielectric loss (tanδ) of 0.05 at 100 Hz. Due to the lattice distortion caused by Zr4+ entering the TiO6 octahedral lattice, Tm of BNBS-(Ti1−x,Zrx) decreases with the increase of ZrO2 doping content. Attractively, BNBS-(Ti1−x,Zrx) exhibits relatively slender polarization-electric field (P-E) loops at a high electric field of 100 kV/cm, and BNBS-(Ti0.97,Zr0.03) achieves considerable recycle discharging energy density (Wrec) of 1.47 J/cm3 and high efficiency (η) of 86.94%. Thus, as a block ceramic synthesized by convenient process, this result is superior to most of similar BNT-based materials, and may provide a reference for pulse power capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data sharing not application to this article due to no datasets were generated or analyzed during the current study.

Code availability

No data or code is generated and available in this manuscript.

References

  1. H. Tang, Y. Lin, H.A. Sodano, Adv. Energy Mater. 3, 451 (2013)

    CAS  Google Scholar 

  2. X.Y. Wei, H.X. Yan, T. Wang, Q.Y. Hu, G. Viola, S. Grasso, Q. Jiang, L. Jin, Z. Xu, M.J. Reece, J. Appl. Phys. 113, 024103 (2013)

    Google Scholar 

  3. Z.Y. Bai, G.Q. Sun, H.X. Zang, M. Zhang, P.F. Shen, Y. Liu, Z.N. Wei, Energies. 12, 3258 (2019)

    Google Scholar 

  4. R. Satu, T. Sampo, H. Jouko, IEEE Sens. J. 15, 3102 (2015)

    Google Scholar 

  5. M.T. Sebastian, H. Jantunen, Int. J. Appl. Ceram. Technol. 7, 415 (2010)

    CAS  Google Scholar 

  6. J.H. Wang, Y. Li, N.N. Sun, J.H. Du, Q.W. Zhang, X.H. Hao, J. Eur. Ceram. Soc. 39, 255 (2019)

    CAS  Google Scholar 

  7. X.L. Wang, L. Zhang, X.H. Hao, S.L. An, Mater. Res. Bull. 65, 73 (2015)

    CAS  Google Scholar 

  8. Z.Q. Hu, B.H. Ma, R.E. Koritala, U. Balachandran, Appl. Phys. Lett. 104, 263902 (2014)

    Google Scholar 

  9. L.M. Chen, N.N. Sun, Y. Li, Q.W. Zhang, L.W. Zhang, X.H. Hao, J. Am. Chem. Soc. 101, 2313 (2017)

    Google Scholar 

  10. J.Y. Wu, A. Mahajan, L. Riekehr, H.F. Zhang, B. Yang, N. Meng, Z. Zhang, Nano Energy 50, 723 (2018)

    CAS  Google Scholar 

  11. T. Wei, K. Liu, P.Y. Fan, D.J. Lu, B.H. Ye, C.R. Zhou, H.B. Yang, H. Tan, D. Salamon, B. Nan, H.B. Zhang, Ceram. Int. 47, 3713 (2021)

    CAS  Google Scholar 

  12. Y.P. Pu, L. Zhang, Y.F. Cui, M. Chen, ACS Sustain. Chem. Eng. 6, 6102 (2018)

    CAS  Google Scholar 

  13. Q. Xu, M. Chen, W. Chen, H.X. Liu, B.H. Kim, B.K. Ahn, Acta Mater. 56, 642 (2008)

    CAS  Google Scholar 

  14. J. Yin, H. Tao, G. Liu, J.G. Wu, J. Am. Ceram. Soc. 103, 1881 (2019)

    Google Scholar 

  15. Y. Huang, Q.G. Guo, H. Hao, H.X. Liu, S.J. Zhang, J. Eur. Ceram. Soc. 39, 4752 (2019)

    CAS  Google Scholar 

  16. Q.B. Yuan, F.Z. Yao, Y.F. Wang, R. Ma, H. Wang, J. Mater. Chem. C 5, 9552 (2017)

    CAS  Google Scholar 

  17. Y. Lin, D. Li, M. Zhang, H.B. Yang, J. Mater. Chem. C 8, 2258 (2020)

    CAS  Google Scholar 

  18. H.F. Ji, D.W. Wang, W.C. Bao, Z.L. Lu, G. Wang, H.J. Yang, A. Mostaed, L.H. Li, A. Feteira, S.K. Sun, F.F. Xu, D.J. Li, C.J. Ma, S.Y. Liu, I.M. Reaney, Energy Storage Mater. 38, 113 (2021)

    Google Scholar 

  19. Y.X. Shen, H. Xie, J.W. Xu, L. Yang, H. Wang, Mater. Rev. 34, 22036 (2020)

    Google Scholar 

  20. L. Jin, F. Li, S.J. Zhang, J. Am. Ceram. Soc. 97, 1 (2014)

    CAS  Google Scholar 

  21. F. Li, X. Hou, J. Wang, H.R. Zeng, B. Shen, J.W. Zhai, J. Eur. Ceram. Soc. 39, 2889 (2019)

    CAS  Google Scholar 

  22. M.R. Filip, G.E. Eperon, H.J. Snaith, F. Giustino, Nat. Commun 5, 5757 (2014)

    CAS  Google Scholar 

  23. E.N.K. W.Travis, H. Glover, D.O. Bronstein, R.G. Scanlon, Chem. Sci. 7, 4548 (2016)

    Google Scholar 

  24. T. Wang, L. Jin, C.C. Li, Q.Y. Hu, X.Y. Wei, J. Am. Ceram. Soc. 98, 559 (2015)

    CAS  Google Scholar 

  25. X.X. Zhou, C.L. Yuan, Q.N. Li, Q. Feng, C.R. Zhou, X. Liu, Y. Yang, G.H. Chen, J. Mater. Sci. Mater. Electron. 27, 3948 (2016)

    CAS  Google Scholar 

  26. M.S. Alkathy, J.A. Eiras, K.C.J. Raju, Ferroelectrics. 570, 153 (2021)

    CAS  Google Scholar 

  27. W. Zhao, D. Xu, D. Li, M. Avdeev, H. Jing, M. Xu, Y. Guo, D. Shi, T. Zhou, W. Liu, D. Wang, Nat. Commun. 14, 5725 (2023)

    CAS  Google Scholar 

  28. N.S. Zhao, H. Fan, L. Ning, J. Ma, Y. Zhou, J. Am. Ceram. Soc. 101, 5578 (2018)

    CAS  Google Scholar 

  29. Y. Pu, L. Zhang, Y. Cui, M. Chen, ACS Sustain. Chem. Eng. 6, 610 (2018)

    Google Scholar 

  30. Z.L. Yu, Y.F. Liu, M.Y. Shen, H. Qian, F.F. Li, Y.N. Lyu, Ceram. Int. 43, 7653 (2017)

    CAS  Google Scholar 

  31. Q. Xu, H.X. Liu, L. Zhang, J. Xie, H. Hao, M.H. Cao, Z.H. Yao, M.T. Lanagan, RSC Adv. 6, 59280 (2016)

    CAS  Google Scholar 

  32. P.G. Ren, Z.C. Liu, X. Wang, Z.F. Duan, Y.H. Wan, F.X. Yan, G.Y. Zhao, J. Alloy Compd. 742, 683 (2018)

    CAS  Google Scholar 

  33. Q. Xu, T.M. Li, H. Hao, S.J. Zhang, Z.J. Wang, M.H. Cao, Z.H. Yao, H.X. Liu, J. Eur. Ceram. Soc. 35, 545 (2015)

    CAS  Google Scholar 

  34. W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, W.D. Fei, J. Eur. Ceram. Soc. 36, 593 (2016)

    CAS  Google Scholar 

  35. Q.N. Li, C.R. Zhou, J.W. Xu, L. Yang, X. Zhang, W.D. Zeng, C.L. Yuan, G.H. Chen, G.H. Rao, J. Electron. Mater. 45, 5146 (2016)

    CAS  Google Scholar 

  36. G.Z. Dong, H.Q. Fan, Y.X. Jia, H. Liu, J. Mater. Sci. Mater Electron. 31, 13620 (2020)

    CAS  Google Scholar 

  37. M. Chandrasekhar, P. Kumar, Phys. B 497, 59 (2016)

    CAS  Google Scholar 

  38. S.J. Pang, L. Yang, J.Y. Qin, H. Qin, H. Xie, H. Wang, C.R. Zhou, J.W. Xu, Appl. Phys. A Mater Sci. Process. 125, 119 (2019)

    Google Scholar 

  39. Q. Xu, M.T. Lanagan, X.C. Huang, J. Xie, L. Zhang, H. Hao, H.X. Liu, Ceram. Int. 42, 9728 (2016)

    CAS  Google Scholar 

  40. M.J. Zhao, W.M. Xia, Y.N. Liang, X.F. Zhang, D.F. Lu, Y. Feng, J. Mater. Sci. Mater Electron. 33, 21702 (2022)

    CAS  Google Scholar 

  41. Z.C. Liu, P.R. Ren, C.B. Long, X. Wang, Y.H. Wan, G.Y. Zhao, J. Alloy Compd. 721, 538 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (NSFC 51773168 and 92066204), NSFC of Shaanxi province (2023-JC-YB- 287), and by the Shaanxi project of Education Department (21JY031).

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NA mainly contributes to the conception, carrying out measurements, manuscript composition. WX mainly is predominated to the conception experimental design and funding surporting. TL contributes to the funding supporting and manuscript composition. CC contributes to the manuscript composition. JL contributes to carrying out measurements equally. MZ contributes to carrying out measurements and manuscript composition.

Corresponding authors

Correspondence to Weimin Xia or Mengjie Zhao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The authors guarantee that there is no human tissue by an institutional review board or equivalent ethics committee is involved in the experiments.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, N., Xia, W., Lu, T. et al. B-site doping of ZrO2 to improve the dielectric and energy storge performances of a BNBS-(Ti1−x,Zrx) ceramic. J Mater Sci: Mater Electron 35, 38 (2024). https://doi.org/10.1007/s10854-023-11806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11806-8

Navigation