Skip to main content

Advertisement

Log in

Analysis and improvement of CIGS solar cell efficiency using multiple absorber substances simultaneously

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the efficiency of a CIGS solar cell was increased in several stages. The common structure and configuration of the CIGS solar cell are the ZnO:Al/ZnO/CdS/CIGS/MO combination whose efficiency is optimized approximately 20% for CIGS with thickness of 2 µm and 17% for CIGS with thickness of 1 µm. In this article, thickness of CIGS is 1 µm and the efficiency of this type of solar cell was calculated using Atlas software of Silvaco. In the first step, by applying Zn1−xMgxO material with x = 0.17 instead of ZnO material, the cell efficiency was 20.7% and then by adding GaAs as the electron reflector layer, we were able to achieve 27.1% efficiency and at the end, to increase the efficiency, one absorber layer is added under the CIGS absorber. This absorber layer is CIS (CIS is CuInSe2) that made the efficiency to become 27.9%. Indeed, CIGS absorber layer is not able to absorb all photons of the sun. So, this added absorber layer is able to absorb a part of low-energy photons, which lead to increasing the efficiency of the solar cell. It should be noted that in the whole process of this article, CIGS and CIS absorber layers are p-type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.A. Green, Photovoltaics: technology overview. Energy Policy 28(14), 989–998 (2000)

    Article  Google Scholar 

  2. M.A. Green, Third generation photovoltaics: solar cells for 2020 and beyond. Phys. E Low Dimen. Syst. Nanostruct. 14(1–2), 65–70 (2002)

    Article  CAS  Google Scholar 

  3. A.A. Ojo, W.M. Cranton, I.M. Dharmadasa, Next Generation Multilayer Graded Bandgap Solar Cells (Springer International Publishing, Berlin, 2019)

    Book  Google Scholar 

  4. A.A. Ojo, I.M. Dharmadasa, 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy 136, 10–14 (2016)

    Article  CAS  Google Scholar 

  5. I.M. Dharmadasa, R.P. Burton, M. Simmonds, Electrodeposition of CuInSe2 layers using a two-electrode system for applications in multi-layer graded bandgap solar cells (Sol. Energy Mater. Sol, Cells, 2006)

    Book  Google Scholar 

  6. I. Dharmadasa, J. Roberts, G. Hill, Third generation multi-layer graded band gap solar cells for achieving high conversion efficiencies—II: experimental results. Sol. Energy Mater. Sol. Cells 88(4), 413–422 (2005)

    Article  CAS  Google Scholar 

  7. O. Echendu, I. Dharmadasa, Graded-bandgap solar cells using all-electrodeposited ZnS, CdS and CdTe thin-films. Energies 8(5), 4416–4435 (2015)

    Article  CAS  Google Scholar 

  8. I.M. Dharmadasa, Third generation multi-layer tandem solar cells for achieving high conversion efficiencies. Sol. Energy Mater. Sol. Cells 85(2), 293–300 (2005)

    Article  CAS  Google Scholar 

  9. M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 26(1), 3–12 (2018)

    Article  Google Scholar 

  10. R.R. King et al., 40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells. Appl. Phys. Lett. 90(18), 183516 (2007)

    Article  Google Scholar 

  11. A.F. Palmstrom et al., Enabling flexible all-perovskite tandem solar cells. Joule 3(9), 2193–2204 (2019)

    Article  CAS  Google Scholar 

  12. M. Skompska, Hybrid conjugated polymer/semiconductor photovoltaic cells. Synt. Met. 160(1–2), 1–15 (2010)

    Article  CAS  Google Scholar 

  13. I. Gharibshahian, S. Sharbati, A.A. Orouji, Potential efficiency improvement of Cu (In, Ga) Se2 thin-film solar cells by the window layer optimization. Thin Solid Films 655, 95–104 (2018)

    Article  CAS  Google Scholar 

  14. S. Sharbati, I. Gharibshahian, A.A. Orouji, Proposed suitable electron reflector layer materials for thin-film CuIn1−xGaxSe2 solar cells. Opt. Mater. (Amst) 75, 216–223 (2018)

    Article  CAS  Google Scholar 

  15. S. Ouédraogo, F. Zougmoré, J.M.B. Ndjaka, Computational analysis of the effect of the surface defect layer (SDL) properties on Cu(In, Ga)Se2-based solar cell performances. J. Phys. Chem. Solids 75(5), 688–695 (2014)

    Article  Google Scholar 

  16. S. Inc., Atlas User’s Manual. Santa Clara: Silvaco, 2019.

  17. A. Zebentout, S. Bechlaghem, Z. Benamara, Investigations of achieved performances of solar cells based chalcogenide via TCAD tools. J. New Technol. Mater. 8(1), 110–113 (2018)

    Article  Google Scholar 

  18. S. Tobbeche, H. Amar, D. Technologie, Two-dimensional modelling and simulation of CIGS thin-film solar cell. J. New Technol. Mater. 4, 89–93 (2014)

    Article  CAS  Google Scholar 

  19. M. Elbar, S. Tobbeche, Numerical simulation of CGS/CIGS single and tandem thin-film solar cells using the silvaco-atlas software. Energy Proc. 74, 1220–1227 (2015)

    Article  CAS  Google Scholar 

  20. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, “Effects of heavy alkali elements in Cu(In, Ga)Se 2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi Rapid Res. Lett. 10(8), 583–586 (2016)

    Article  CAS  Google Scholar 

  21. A. Chirilă et al., Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nat. Mater. 12(12), 1107–1111 (2013)

    Article  Google Scholar 

  22. S. F. K. K., Solar frontier achieves world record thin-film solar cell efficiency: 22.3 %, 2015. https://www.solar-frontier.com/eng/news/2019/0117_press.html.

  23. J. Chantana, T. Kato, H. Sugimoto, T. Minemoto, Thin-film Cu(In, Ga)(Se, S) 2-based solar cell with (Cd, Zn)S buffer layer and Zn1–xMgxO window layer. Prog. Photovolt. Res. Appl. 25(6), 431–440 (2017)

    Article  CAS  Google Scholar 

  24. J. Lindahl et al., Inline Cu(In, Ga)Se2 Co-evaporation for high-efficiency solar cells and modules. IEEE J. Photovolt. 3(3), 1100–1105 (2013)

    Article  Google Scholar 

  25. T.M. Friedlmeier et al., Improved photocurrent in Cu(In, Ga)Se 2 solar cells: from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE J. Photovolt. 5(5), 1487–1491 (2015)

    Article  Google Scholar 

  26. S. Spiering, A. Nowitzki, F. Kessler, M. Igalson, H. Abdel Maksoud, Optimization of buffer-window layer system for CIGS thin film devices with indium sulphide buffer by in-line evaporation. Sol. Energy Mater. Sol. Cells 144, 544–550 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Abbasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatemi Shariat Panahi, S., Abbasi, A., Ghods, V. et al. Analysis and improvement of CIGS solar cell efficiency using multiple absorber substances simultaneously. J Mater Sci: Mater Electron 31, 11527–11537 (2020). https://doi.org/10.1007/s10854-020-03700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03700-4

Navigation