Skip to main content

Advertisement

Log in

Fabrication of a novel PANI/[Co(NH3)4(C3H4N2)2]Cl3 nanocomposite with enhanced dielectric constant and ac-conductivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new polyaniline/[Co(NH3)4(C3H4N2)2]Cl3 nanocomposite was synthesised by in-situ oxidative polymerisation of aniline monomer in non-aqueous DMSO medium. The nanocomposite was investigated as a suitable material for energy storage and high frequency device applications due to its high value of dielectric constant (≈104) and ac-conductivity (≈108) with a rapid decrease in loss tangent in the high frequency region. The nanocomposite was characterised by techniques like UV–Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction analysis and field emission scanning electron microscopy (FESEM). The results revealed presence of photoadduct (PA) in PANI@PA nanocomposite with significant interaction between PANI matrix and PA nanoparticles. The PANI@PA nanocomposite exhibit enhanced thermal stability broadening its scope of usability. The better dispersion of PA nanoparticles in the PANI matrix as observed in FESEM, facilitates better charge transport. Dielectric study showed capacitive effect of the nanocomposite at low frequency and a conductivity effect at high frequency. The high value of dielectric constant and ac-conductivity of PANI@PA nanocomposite is attributed to the heterogeneous structure of nanocomposite with enhanced interface, which has a positive effect on the dielectric properties of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Nalwa, Handbook of Low and High Dielectric Constant Materials and Their Applications. (Academic Press, London, 1999)

    Google Scholar 

  2. T. Osaka, M. Datta, Energy Storage Systems for Electronics. (Gordon and Breach, Amsterdam, 2001)

    Google Scholar 

  3. Y. Ma, N. Li, C. Yang, X. Yang, Colloids Surf. A 269, 1(2003)

    Article  Google Scholar 

  4. T. Machappa, M.V.N. Ambikka Prasad, Bull. Mater. Sci. 35, 1 (2012)

    Article  Google Scholar 

  5. N. Parvatikar, S. Jain, S. Khasim Sens. Actuators B 114, 2(2006)

    Article  Google Scholar 

  6. I. Sedenkova, M. Trchova, J. Stejskal, Polym. Degrad. Stab 93, 12 (2008)

    Google Scholar 

  7. J. Alam, U. Riaz, S.M. Ashraf, S. Ahmad, J. Coat. Technol. Res 5, 1 (2008)

    Article  Google Scholar 

  8. K. Majid, R. Tabassum, A. F. Shah, S. Ahmad, M. L. Singla, J. Mater. Sci. 20, 958 (2009)

    Google Scholar 

  9. T.J. Lewis, IEEE Trans. Dielectr. Electr. Insul. 11, 5 (2004)

    Article  Google Scholar 

  10. T.J. Lewis, J. Phys. D 38, 2 (2005)

    Article  Google Scholar 

  11. M. H. Najar, K. Majid, J. Mater. Sci. 24, 11 (2013)

    Google Scholar 

  12. S. K. Moosvi, K. Majid, J. Mater. Sci. 27, 7 (2016)

    Google Scholar 

  13. M.H. Najar, K. Majid, J. Mater. Sci. 26, 9 (2015)

    Google Scholar 

  14. M.H. Najar, K. Majid, RSC. Adv. 5, 07209–107221 (2015)

    Article  Google Scholar 

  15. S.K. Moosvi, K. Majid, T. Ara, J. Appl. Polym. Sci. 27, 7 (2016)

    Google Scholar 

  16. P. Ghosh, S. K. Siddhanta, S. R. Haque, A. Chakarbati, Syn. Met. 123, 1 (2001)

    Article  Google Scholar 

  17. J. Jiang, L. Li, M. Zhu, React. Funct. Polym 68, 1 (2008)

    Article  Google Scholar 

  18. J. Jiang, L. Li, F. Xu, J. Phys. Chem. Solids 68, 9 (2007)

    Google Scholar 

  19. H. Guo, H. Zhu, H. Lin, J. Zhang, Mater. Lett. 62, 14 (2008)

    Google Scholar 

  20. V. Eskizeybek, F. Sarı, H. Gulce, A. Gulce, A. Avcı, Appl. Catal. B 119, 197–206 (2012)

    Article  Google Scholar 

  21. S. Min, F. Wang, Y. Han, J. Mater. Sci. 42, 24 (2007)

    Google Scholar 

  22. M.A. Salem, A.F. Al-Ghonemiy, A.B. Zaki, Appl. Catal. B 9, 1 (2009)

    Google Scholar 

  23. J. Xu, W. Liu, H. Li, Mater. Sci. Eng. C 25, 4 (2005)

    Article  Google Scholar 

  24. A. Guinier, X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, (W. H. Freeman, San Francisco, 1963)

    Google Scholar 

  25. S.E. Jacobo, J.C. Aphesteguy, R.L. Anton, N.N. Schegoleva, G.V. Kurlyandskaya, Eur. Polym. J. 43, 4 (2007)

    Article  Google Scholar 

  26. M. Wan, J. Fan, Polym. Sci. A 36, 15 (1998)

    Google Scholar 

  27. F.A. Mir, S. Rehman, K. Asokan, S.H. Khan, G.M. Bhat, J. Mater. Sci. 25, 1258 (2014)

    Google Scholar 

  28. M.S. Rather, K. Majid, R.K. Wanchoo, M.L. Singla, Synth. Met. 179, 60–66 (2013)

    Article  Google Scholar 

  29. F. A. Rafiqiand K. Majid, RSC Adv. 6, 26 (2016)

    Google Scholar 

  30. A.H. Elsayed, M.S. MohyEldin, A.M. Elsyed, A. H. Abo Elazm, E.M. Younes, H.A. Motaweh, Int. J. Electrochem. Sci. 6, 206–221 (2011)

    Google Scholar 

  31. Y.N. Qi, F. Xu, L.X. Sun, J. Therm. Anal. Calorim. 94, 1 (2008)

    Google Scholar 

  32. H. Bhandari, S.A. Kumar, S.K. Dhawan, Conducting Polymer Nanocomposites for Anticorrosive and Antistatic Applications, vol. 13 (INTECH Open Access Publisher, Rijeka, 2012)

    Google Scholar 

  33. K.W. Wagner, Ann. Phys 345, 5 (1913)

    Article  Google Scholar 

  34. M. Faisal, S. Khasim, Bull. Korean Chem. Soc. 34, 1 (2013)

    Article  Google Scholar 

  35. M.A. Dar, K.M. Batoo, V. Verma, W.A. Siddiqui, R.K. Kotnala, J. Alloys Compd. 493, 1 (2010)

    Article  Google Scholar 

  36. M.H. Lakhdar, B. Ouni, M. Amlouk, Mat. Sci. Semicond. Process. 19, 32–39 (2014)

    Article  Google Scholar 

  37. M.A. Dar, V. Verma, S.P. Gairola, W.A. Siddiqui, R.K. Singh, R.K. Kotnala, Appl. Surf. Sci. 258, 14 (2012)

    Article  Google Scholar 

  38. G.M. Tsangaris, G.C. Psarras, J. Mater. Sci. 34, 9 (1999)

    Article  Google Scholar 

  39. G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Composites A 33, 3 (2002)

    Article  Google Scholar 

  40. G. Perrier, A. Bergeret, J. Polym. Sci. B 35, 9 (1997)

    Article  Google Scholar 

  41. P. Dutta, S. Biswas, M. Ghosh, Synth. Met. 122, 2 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kowsar Majid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naqash, W., Majid, K. Fabrication of a novel PANI/[Co(NH3)4(C3H4N2)2]Cl3 nanocomposite with enhanced dielectric constant and ac-conductivity. J Mater Sci: Mater Electron 28, 14217–14225 (2017). https://doi.org/10.1007/s10854-017-7279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7279-6

Navigation