Skip to main content
Log in

Structural, vibrational and optical properties of a new self assembled organic–inorganic crystal (C4H7N2) [CdCl3(H2O)]

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present paper reports the synthesis of a single crystal of a new organic–inorganic hybrid compound, with the formula (C4H7N2) [CdCl3(H2O)], by slow evaporation method at room temperature. It was characterized by single crystal X-ray diffraction, X-ray powder, Hirshfeld surface, spectroscopy measurement, thermal study and photoluminescence properties. A preliminary single crystal X-ray diffraction structural analysis revealed that it crystallized in the monoclinic system (space group P21/c) with the following unit cell parameters: a = 9.02786 (19) Å, b = 14.8876 (3) Å, c = 7.4510 (1) Å, β = 94.1212 (17)° with Z = 4. The refinement converged to R = 0.038 and ωR = 0.097. Its atomic arrangement can be described as an alternation of organic and inorganic layers along the a-axis. The crystal packing was governed by the N–H···Cl and O–H···Cl hydrogen bonding interaction between the 2 methyl imidazolium cations, the [CdCl3(H2O)n−]n anions and π–π stacking interactions in which they may be effective in the stabilization of the crystal structure. The Hirshfeld surface analysis was conducted to investigate intermolecular interactions and associated 2D fingerprint plots, revealing the relative contribution of these interactions in the crystal structure quantitatively. Furthermore, the room temperature infrared spectrum of the title compound was recorded and analyzed on the basis of data found in the literature. Besides, the thermal analysis studies were performed, but no phase transition was found in the temperature range between 400 and 700 K. The optical and photoluminescence properties of the compound were investigated in the solid state at room temperature and exhibited two bands at 320 and 340 nm and a strong fluorescence at 570 nm. Finally, the dielectric properties were carried out in order to characterize the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S. Chen, J.J. Sui, L. Chen, Colloid Polym. Sci. 283, 66 (2004)

    Article  Google Scholar 

  2. Z.S. Petrovic, I. Javni, A. Waddon, G. Banhegyi, J. Appl. Polym. Sci. 76, 133 (2000)

    Article  Google Scholar 

  3. P. Sanchez, M.Popall Belleville,, L. Nicole, Chem. Soc. Rev. 40, 696 (2011)

    Article  Google Scholar 

  4. S.G. Carrero, R.E. Galian, J.P. Prieto, Part Syst. Charact. 32, 709 (2015).

    Article  Google Scholar 

  5. W.B. Soltan, M. Mbarki, S. Ammar, O. Badot, T. Toupance, J. Mater. Sci. 26, 1612 (2015)

    Google Scholar 

  6. I. Saikumar, S. Ahmad, J.J. Baumberg, G.V. Prakash, Scr. Mater. 67, 834 (2012)

    Article  Google Scholar 

  7. K. Pradeesh, G.S. Yadav, M. Singh, G.V. Prakash, Mater. Chem. Phys. 124, 44 (2010)

    Article  Google Scholar 

  8. K. Pradeesh, J.J. Baumberg, G.V. Prakash, Opt. Express 17, 22171 (2009)

    Article  Google Scholar 

  9. M.F. Mostafa, A. Hassen, Phase Transit. 79, 305 (2006)

    Article  Google Scholar 

  10. K. Liang, D.B. Mitzi, M.T. Prikas, Chem. Mater. 10, 403 (1998)

    Article  Google Scholar 

  11. A. Vishwakarma, P. Ghalsasi, A. Navamoney, Y. Lan, A. Powell, Polyhedron 30, 1565 (2011)

    Article  Google Scholar 

  12. I. Chaabane, F. Hlel, K. Guidara, J. Alloys Compd. 461, 495 (2008)

    Article  Google Scholar 

  13. T.P. Radhakrishnan, Acc. Chem. Res. 41, 367 (2008)

    Article  Google Scholar 

  14. G.R. Desiraju, Angew. Chem. Int. Ed. 46, 8342 (2007)

    Article  Google Scholar 

  15. D. Xu, M.H. Jiang, X.T. Tao, Z.S. Shao, J. Synth. Cryst. 16, 1(1987)

    Google Scholar 

  16. G.C. Xing, M.H. Jiang, Z.S. Shao, D. Xu Chin. J. Lasers 14, 302 (1987)

    Google Scholar 

  17. N. Zhang, M.H. Jiang, D.R. Yuan, D. Xu, X.T. Tao, Z.S. Shao, J. Cryst. Growth 102, 580 (1990)

    Article  Google Scholar 

  18. D.J. Eisler, R.J. Puddephatt, Inorg. Chem. 42, 8192 (2003)

    Article  Google Scholar 

  19. J.F. Bringley, M. Rajeswaran, L.P. Olson, N.M. Liebert, J. Solid State Chem. 178, 3074 (2005)

    Article  Google Scholar 

  20. M.H. Bi, G.H. Li, J. Hua, X.M. Liu, Y.W. Hu, Z. Shi, S.H. Feng, CrystEngComm 9, 984 (2007)

    Article  Google Scholar 

  21. B. Gustafsson, M. Håkansson, S. Jagner, Inorg. Chim. Acta 358, 1309 (2005)

    Article  Google Scholar 

  22. A. Thorn, R.D. Willett, B. Twamley, Polyhedron 25, 2891 (2006)

    Article  Google Scholar 

  23. A. Kessentini, M. Belhouchet, J.J. Suñol, Y. Abid, T. Mhiri, J. Mol. Struct. 1039, 207 (2013)

    Article  Google Scholar 

  24. L.Y. Kong, X.H. Lu, Y.Q. Huang, H. Kawaguchi, Q. Chu, H.F. Zhu, W.Y. Sun, J. Solid State Chem. 180, 331 (2007)

    Article  Google Scholar 

  25. K. Ma, J. Xu, P. Zhang, Y. Wang, L. Wang, Y. Fan, T. Song, Solid State Sci. 8, 1473 (2006)

    Article  Google Scholar 

  26. J. Jin, M.J. Jia, Y.C. Wang, J.H. Yu, Q.F. Yang, J.Q. Xu, Inorg. Chem. Commun. 14, 1681 (2011)

    Article  Google Scholar 

  27. A.B. Corradi, M.R. Cramarossa, M. Saladini, J. Giusti, A. Saccani, F. Sandrolini, Inorg. Chim. Acta 233, 85 (1995)

    Article  Google Scholar 

  28. H. Wang, R.G. Xiong, C.M. Liu, H.Y. Chen, Xi. Z. You, W. Chen, Inorg. Chim. Acta 254, 183 (1997)

    Article  Google Scholar 

  29. G. Charlot, Chimie Analytique Quantitative, vol. 2 (Masson, Paris, 1974)

  30. L.J. Farrugia, J. Appl. Cryst. 30, 565 (1997)

    Article  Google Scholar 

  31. X. Wang, S. Liu, L. Weng, G. Jin, J. Organomet. Chem. 690, 2934 (2005)

    Article  Google Scholar 

  32. K. Meena, K. Muthu, V. Meenatchi, M. Rajasekar, G. Bhagavannarayana, S.P. Meenakshisundaram, J. Mol. Biomol. Spectrosc. 124, 663 (2014)

    Article  Google Scholar 

  33. M.A. Spackman, J.J. McKinnon, J. Cryst. Eng. Comm. 4, 378 (2002)

    Article  Google Scholar 

  34. J.J. McKinnon, D. Jayatilaka, M.A. Spackman, J. Chem. Commun. 37, 3814 (2007)

    Article  Google Scholar 

  35. S.K. Seth, G.C. Maity, T. Kar, J. Mol. Struct. 1000, 120 (2011)

    Article  Google Scholar 

  36. A.L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J.J. Mckinnon, B. Kahr, Cryst. Growth 8, 4517 (2008).

    Article  Google Scholar 

  37. S.K. Wolff, D.J. Grimwood, J.J. McKinnon, D. Jayatilaka, M.A. Spackman, CrystalExplorer 2.1 (University of Western Australia, Perth, 2007)

  38. M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, J. Cheminformatics 4, 1 (2012)

    Article  Google Scholar 

  39. P. Nagapandiselvi, C. Baby, R. Gopalakrishnan, J. Mater. Res. Bull. 81, 33 (2016)

    Article  Google Scholar 

  40. M.A. Beckett, P.N. Horton, M.B. Hursthouse, J.L. Timmis, Polyhedron 77, 96 (2014)

    Article  Google Scholar 

  41. J.X. Mao, A.S. Lee, J.R. Kitchin, H.B. Nulwala, D.R. Luebke, K. Damodaran, J. Mol. Struct. 1038, 12 (2013)

    Article  Google Scholar 

  42. A.A. Rempel, E.A. Kozlova, T.I. Gorbunova, S.V. Cherepanova, E.Yu. Gerasimov, N.S. Kozhevnikova, A.A. Valeeva, E.Yu. Korovin, V.V. Kaichev, Yu.A. Shchipunov, J. Catal. Commun. 68, 61 (2015)

    Article  Google Scholar 

  43. Q. Chen, D. Yin, S. Zhu, X. Hu, J. Colloid Interface Sci. 367, 241 (2012).

    Article  Google Scholar 

  44. A. Kessentini, M. Belhouchet, J.J. Suñol, Y. Abid, T. Mhiri, J. Lumin 149, 341 (2014)

    Article  Google Scholar 

  45. W. Wang, X. Chen, S. Efrima, J. Phys. Chem. B 103, 7238 (1999)

    Article  Google Scholar 

  46. H.F. Chen, M.J. Zhang, M.S. Wang, W.B. Yang, X.G. Guo, C.Z. Lu, Inorg. Chem. Commun. 23, 123 (2012)

    Article  Google Scholar 

  47. S.V. Larionov, T.E. Kokina, V.F. Plyusnin, L.A. Glinskaya, A.V. Tkachev, Y.A. Bryleva, N.V. Kuratieva, M.I. Rakhmanova, E.S. Vasilyev, Polyhedron 77, 75 (2014)

    Article  Google Scholar 

  48. O.M. Sghaier, R.M. Merona, E.F. Zapico, S.G. Granda, A.F. Gonzalez, L. Ktari, M. Dammak, J. Mol. Struct. 1105, 105 (2016)

    Article  Google Scholar 

  49. R. Ayouchi, D. Leien, F. Martin, M. Gabas, E. Dalchiele, J.R. Barrodo, Thin Solid Films 68, 426 (2003)

    Google Scholar 

  50. C.T. Moynihan, L.P. Boesch, N.L. Laberge, Phys. Chem. Glasses 14, 122 (1973)

    Google Scholar 

  51. M. Haibado, B. Louati, F. Hlel, K. Guidara, J. Alloys Compd. 509, 6083 (2011)

    Article  Google Scholar 

  52. R. Mesbeh, B. Hamdi, R. Zouari, J. Mol. Struct. 1128, 205 (2017)

    Article  Google Scholar 

  53. S. Chaouachi, B. Hamdi, R. Zouari, J. Synth. Met. 233, 122 (2017)

    Article  Google Scholar 

  54. R. Elwej, N. Hannachi, I. Chaabane, A. Oueslati, F. Hlel, Inorg. Chim. Acta 406, 10 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Faculty of Science in University of Gabes, Tunisia, Spanish Ministerio de Economía y Competitividad (MINECO-13-MAT2013-40950-R, and FPI Grant BES-2011-046948 to MSM.A.) and Gobierno del Principado de Asturias (GRUPIN14-060) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Saber Lassoued.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lassoued, M.S., Soltan, W.B., Abdelbaky, M.S.M. et al. Structural, vibrational and optical properties of a new self assembled organic–inorganic crystal (C4H7N2) [CdCl3(H2O)]. J Mater Sci: Mater Electron 28, 12698–12710 (2017). https://doi.org/10.1007/s10854-017-7095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7095-z

Keywords

Navigation